Exercise 1. Consider the system

$$
X^{\prime}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right) X
$$

where $\lambda_{1}<\lambda_{2}<\lambda_{3}<0$ Describe how the solution through an arbitrary initial value tends to the origin.

Solution. The system is a sink. All solutions tends exponentially to the origin.
Exercise 2. Find the general solution of

$$
X^{\prime}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 3 & -3 & -1 \\
0 & 3 & -2 & -2 \\
1 & 1 & -2 & 0
\end{array}\right) X
$$

Describe the stable and unstable space. Draw a phase diagram for the 2 spaces.
Solution. The characteristic polynomial is given by

$$
(1-\lambda)\left(-\lambda^{3}+\lambda^{2}-2\right)=0
$$

hence the roots are $1,-1,1+i$ and $1-i$. Thus the stable space has dimension 1 and the unstable space has dimension 3. The phase portrait is pictured in figure 1 looks as follows with all lines flowing outwards. The phase portrait for the 1-dimensional stable space is trivial.

Exercise 4. Consider the system

$$
X^{\prime}=\left(\begin{array}{ccc}
a & 0 & b \\
0 & b & 0 \\
-b & 0 & a
\end{array}\right) X
$$

which depends on two real parameters a and b. Find the general solution of this system. Sketch the regions in the $a b$-plane where the system has different types of phase planes.

Solution. The characteristic polynomial is given by

$$
(a-\lambda)\left(\lambda^{2}-\lambda a b+b^{2}+a^{2}\right)=0
$$

Hence the eigenvalues are $\lambda_{1}=b$ and $\lambda_{ \pm}=a \pm i b$. If b is not equal to zero, then all eigenvalues are distinct and hence the system is diagonalizeable. If b is equal to zero then system is diagonalizeable by inspection. Thus the general solution is given by

$$
X(t)=c_{1} v_{1} e^{b t}+e^{a t} \cdot\left(c_{+} v_{+} e^{i b t}+c_{-} v_{-} e^{-i b t}\right)
$$

Figure 1: Phase portrait for exercise 3.

Figure 2: $a b$-plane for exercise 3.

