MAT 308 - Homework 6 Solutions Filip Samuelsen

Exercise 11.5:2. Use integration by parts to verify that
e 1
L[t)(s) = / te™*tdt = = for s >0
0 S

Solution.

> @ st st 1 a 1
/ te tdt lim te tdt = lim {t - ] =lm - —— — —— =
0 t

a—oo [ a— oo —S S a—0o0 82 sesa 82€sa

By L’hopitals rule,

thus

Exercise 11.5:8. Compute L[cos(t + a)](s).

Solution. Applying integration by parts twice we see that

1 1 1
/Cos(t +a)e *tdt = —cos(t + a)—e " +sin(t + a)—Qe_St — /cos(t + a)—Qe_Stdt
s s s

hence
—cos(t +a)te ! +sin(t +a)Fe ™t  __ —cos(t+a)+sin(t+a)l

cos(t + a)e stdt = =e
/ (t+a) (1+%) s+ 1

therefore

o (a) — sin(q)L _ cos(t nlt )
Llcos(t+a)](s) = / cos(t +a)e~*tdt = M + lim et cos(t + a) +sin(t 4 a)5
0

1
= t— =
s—|—s oo s—i—s

By a straight forward application of the squeeze theorem, the limit converges to zero, hence

L[cos(t + a)](s) = COS(G)Slslin(a)g _ s COS(;);lsin(a)

Exercise 11.5:12. Find the inverse Laplace transform of

2
s2+4

Solution. 1 claim that b

52 +b?
Let us verify; Applying integration by parts twice we see that

L(sin(bt)) =

1 _ 1 1
/Sin(bt)e_Stdt = —sin(bt)—e " — beos(bt) e " — /b2 sin(bt) e~ *"dt
s s s
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hence
sin(bt)Le=st 4 bcos(bt) L et sin(bt) + bcos(bt):
/Sin(bt)e*”dt: _sin@®0); 3 Gk =—e 5 (6) 72 Ok
SO 1 1
& b= sin(bt) 4+ bcos(bt) <
L(sin(bt)) = / sin(bt)e 5tdt = S + lim —e (&) 3 (b0)s
0 s+ 5 t—00 s+ 5
By a straight forward application of the squeeze theorem, the limit converges to zero, hence
bt b
L(sin(bt)) = —25 =

3—{—%752-1-[)2
O

Exercise 11.5:24. Let P(D) be an nth-order linear constant coefficient, differential operator.
Show that
LIP(D)yl(s) = P(s)Lyl(s) + Q(s)

for some polynomial @) of degree n — 1. Use induction.

Solutions. The proof is by induction. For the basecase let n = 1 then P(D)y = ay’ + by for some
constants a, b. First remark that by integration by parts we have

1
/ye‘“dt = Yty f/y’e_Stdt
s s

sLly) = Lly] = lim [—y(t)e™"],Z5 = y(0) = lim y(x)e

Assuming that the Laplace transforms on the left hand side exists, then the limit on the right
hand side converges for all s > 0. It follows that lim,_, o, y(z)e™** = 0 thus

L[Dy] = L[y'] = sLy] — y(0) (%)

therefore

So therefore
LIP(D)yl(s) = aLly'](s) + bL[y](s) = a (sL[y] — y(0)) + bL[y](s) = P(s)L[y] — ay(0)

Since s — ay(0) is polynomial of degree zero, then this completes the basecase.
For the induction step, let P(D) be a polynomial of degree n + 1, then by the fundamental
theorem of algebra P(D) = (aD + b) o (P(D)) for some polynomial P of degree atmost n, so

LIP(DYyl(s) = LlaD o P(D)y + bP(D)y)(s) = aLID o P(D)y) + LIP(D)y](s)

and by (x) we have

L[D o P(D)y] = sLIP(D)y] — (P(D)y)(0)

SO

LIP(D)y)(s) = a (LIP(D)y](s) ~ (P(D)y)(0)) + bLIP(D)y](s)
= (as+b) LIP(D)y)(s) — a- (P(D)y)(0)
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By the induction hypothesis
LIP(D)y)(s) = P(s)Llyl(s) + Q(s)
for some polynomial @ of degree n — 1. Therefore
LIPDY](s) = (as +b) - (P()LI(3) + Q(s)) —a- (P(D))(0)
= P(s)Lly](s) + (as +b) - Q(s) — a- (P(D)y)(0)

Since Q is polynomial of degree n — 1 then s — (as 4 b) - Q(s) — a - (P(D)y)(0) is a polynomial

of degree n. This completes the induction step.
Exercise 11.6:2. Compute the convolution
2% (12 +1)

Solution.

_[u?’t2+u5_2u4t+u:3:|u_t
13 5 4 3 ]uzo
t3t2+t5 7f4t+t3

_t5 E_FE_E _|_ﬁ
- 30 30 30 3

Exercise 11.6:8. Using convolution compute the inverse Laplace transform of

1
(s2+1)(s—1)
Solutions.
1 1 1

(s24+1)(s—1) - (s2+1) (s—1) = Lsin(t)](s)L[e"](s) = L[sin(t) * €']

so it suffices to compute the convolution

t t
sin(t) x ' = / sin(u) - e "du = et/ sin(u) - e “du
0 0

Applying integration by parts twice, we see that

/ sin(w)e—"du = — sin(u)e=" — cos(u)e—" — / sin(w)e—"du

O
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SO
t o u=t _
/ sin(u) - e “du = | — (sin(u)e " + cos(u)e™") =5 ((sin(t) + cos(t)) e " — 1)
0 u=0
therefore ) )
sin(t) x et = 5 (sin(t) + cos(t) — ') = 3 (e" —sin(t) — cos(t))
O
Exercise 11.6:10. Compute the inverse Laplace transform of
6728
s(s?2+4)
Solution. First we notice that
e”® 5101
5(52+4)_e ss2+4
1
=e %L {2} (s)L[sin(2t)](s)
_os |1
=e °L 5 sin(2t)| (s)
Since ) )
3 / sin(2t — 2u)du = 1 cos(2t — 2u)
then
T IR 1 1
—xsin(2t) = = [ sin(2t — 2u)du = = (cos(0) — cos(2t)) = ~ (1 — cos(2t))
2 2 J; 4 4
therefore
i =e L ! (1 —cos(2t))| (s) =L ! (1 —cos(2(t—2)))| (s)
s(s2+4) ¢ 4 g §
so the inverse Lapalce transform is
1
1 (1 — cos(2t — 4))
O

Exercise 11.6:22. Recall that the gamma function can be defined by
I'(z) = / t*te~tdt z>0
0

(a) Use integration by parts to show that
L(z+1) =2I(2)

(b) deduce from part a that T'(n+ 1) =n! forn =0,1,2,....
(c) Show that if @ > —1 then
I'a+1)

L[t*](s) =
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Solution. By integration by parts we see that
/tze*tdt = —t7e "+ z/t'z*le*tdt

L(z+1) = / tPetdt = [ftze*t]z:m +2T(2)
0

therefore
=0

hence the result follows once we show that [—tze_t]izgo = 0. To this end

[—tze_t]tzoo = (lim —tze_t> +0%.e2=0

t=0 t—o0

where the limit can be evaluated (for fixed z) using L’hopitals rule a finite number of times.
(b) We prove it by induction; First the basecase n = 0;

L0+1) = / e tdt = / e tdt =1
0 0
Now suppose that I'(n 4+ 1) = n! then by part (a)
FMn+1)+)=n+DIn+1)=(Mn+1) -nl=(n+1)!

(c) Let u = st then du = sdt so

e 1 o 1
a —stya —u, a
E[t](s)—/o e tdt—sa 1/0 e udu-sa 1F(a—l—l)
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