
MAT 308 - Homework 6 Solutions Filip Samuelsen

Exercise 11.5:2. Use integration by parts to verify that

L[t](s) =
∫ ∞

0

te−stdt =
1

s2
for s > 0

Solution.∫ ∞

0

te−stdt lim
a→∞

∫ a

0

te−stdt = lim
a→∞

[
t
e−st

−s
− e−st

s2

]t=a

t=0

= lim
a→∞

1

s2
− a

sesa
− 1

s2esa
=

By L’hopitals rule,

lim
a→∞

a

sesa
= lim

a→∞

1

s2esa
= 0

thus

L[t](s) = 1

s2

Exercise 11.5:8. Compute L[cos(t+ a)](s).

Solution. Applying integration by parts twice we see that∫
cos(t+ a)e−stdt = − cos(t+ a)

1

s
e−st + sin(t+ a)

1

s2
e−st −

∫
cos(t+ a)

1

s2
e−stdt

hence∫
cos(t+ a)e−stdt =

− cos(t+ a) 1se
−st + sin(t+ a) 1

s2 e
−st(

1 + 1
s2

) = e−st− cos(t+ a) + sin(t+ a) 1s
s+ 1

s

therefore

L[cos(t+ a)](s) =

∫ ∞

0

cos(t+ a)e−stdt =
cos(a)− sin(a) 1s

s+ 1
s

+ lim
t→∞

e−st− cos(t+ a) + sin(t+ a) 1s
s+ 1

s

By a straight forward application of the squeeze theorem, the limit converges to zero, hence

L[cos(t+ a)](s) =
cos(a)− sin(a) 1s

s+ 1
s

=
s cos(a)− sin(a)

s2 + 1

Exercise 11.5:12. Find the inverse Laplace transform of

2

s2 + 4

.

Solution. I claim that

L(sin(bt)) = b

s2 + b2

Let us verify; Applying integration by parts twice we see that∫
sin(bt)e−stdt = − sin(bt)

1

s
e−st − b cos(bt)

1

s2
e−st −

∫
b2 sin(bt)

1

s2
e−stdt
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hence ∫
sin(bt)e−stdt = −

sin(bt) 1se
−st + b cos(bt) 1

s2 e
−st

1 + b2

s2

= −e−st sin(bt) + b cos(bt) 1s
s+ b2

s

so

L(sin(bt)) =
∫ ∞

0

sin(bt)e−stdt =
b 1s

s+ b2

s

+ lim
t→∞

−e−st sin(bt) + b cos(bt) 1s
s+ b2

s

By a straight forward application of the squeeze theorem, the limit converges to zero, hence

L(sin(bt)) =
b 1s

s+ b2

s

=
b

s2 + b2

Exercise 11.5:24. Let P (D) be an nth-order linear constant coefficient, differential operator.
Show that

L[P (D)y](s) = P (s)L[y](s) +Q(s)

for some polynomial Q of degree n− 1. Use induction.

Solutions. The proof is by induction. For the basecase let n = 1 then P (D)y = ay′+ by for some
constants a, b. First remark that by integration by parts we have∫

ye−stdt = −y

s
e−st +

1

s

∫
y′e−stdt

therefore
sL[y]− L[y′] = lim

x→∞

[
−y(t)e−st

]t=x

t=0
= y(0)− lim

x→∞
y(x)e−sx

Assuming that the Laplace transforms on the left hand side exists, then the limit on the right
hand side converges for all s > 0. It follows that limx→∞ y(x)e−sx = 0 thus

L[Dy] = L[y′] = sL[y]− y(0) (⋆)

So therefore

L[P (D)y](s) = aL[y′](s) + bL[y](s) = a (sL[y]− y(0)) + bL[y](s) = P (s)L[y]− ay(0)

Since s 7→ ay(0) is polynomial of degree zero, then this completes the basecase.
For the induction step, let P (D) be a polynomial of degree n + 1, then by the fundamental

theorem of algebra P (D) = (aD + b) ◦ (P̃ (D)) for some polynomial P̃ of degree atmost n, so

L[P (D)y](s) = L[aD ◦ P̃ (D)y + bP̃ (D)y](s) = aL[D ◦ P̃ (D)y] + bL[P̃ (D)y](s)

and by (⋆) we have
L[D ◦ P̃ (D)y] = sL[P̃ (D)y]− (P̃ (D)y)(0)

so

L[P (D)y](s) = a
(
sL[P̃ (D)y](s)− (P̃ (D)y)(0)

)
+ bL[P̃ (D)y](s)

= (as+ b)L[P̃ (D)y](s)− a · (P̃ (D)y)(0)
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By the induction hypothesis

L[P̃ (D)y](s) = P̃ (s)L[y](s) +Q(s)

for some polynomial Q of degree n− 1. Therefore

L[P (D)y](s) = (as+ b) ·
(
P̃ (s)L[y](s) +Q(s)

)
− a · (P̃ (D)y)(0)

= P (s)L[y](s) + (as+ b) ·Q(s)− a · (P̃ (D)y)(0)

Since Q is polynomial of degree n− 1 then s 7→ (as+ b) ·Q(s)− a · (P̃ (D)y)(0) is a polynomial
of degree n. This completes the induction step.

Exercise 11.6:2. Compute the convolution

t2 ∗ (t2 + 1)

Solution.

t2 ∗ (t2 + 1) =

∫ t

0

u2 · ((t− u)2 + 1)du =

∫ t

0

u2 · (t2 + u2 − 2ut+ 1)du

=

∫ t

0

u2t2 + u4 − 2u3t+ u2du

=

[
u3

3
t2 +

u5

5
− 2u4

4
t+

u3

3

]u=t

u=0

=
t3

3
t2 +

t5

5
− t4

2
t+

t3

3

= t5
(
10

30
+

6

30
− 15

30

)
+

t3

3

=
t5

30
+

t3

3

Exercise 11.6:8. Using convolution compute the inverse Laplace transform of

1

(s2 + 1)(s− 1)

Solutions.

1

(s2 + 1)(s− 1)
=

1

(s2 + 1)

1

(s− 1)
= L[sin(t)](s)L[et](s) = L[sin(t) ∗ et]

so it suffices to compute the convolution

sin(t) ∗ et =
∫ t

0

sin(u) · et−udu = et
∫ t

0

sin(u) · e−udu

Applying integration by parts twice, we see that∫
sin(u)e−udu = − sin(u)e−u − cos(u)e−u −

∫
sin(u)e−udu
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so ∫ t

0

sin(u) · e−udu =

[
−1

2

(
sin(u)e−u + cos(u)e−u

)]u=t

u=0

=
−1

2

(
(sin(t) + cos(t)) e−t − 1

)
therefore

sin(t) ∗ et = −1

2

(
sin(t) + cos(t)− et

)
=

1

2

(
et − sin(t)− cos(t)

)

Exercise 11.6:10. Compute the inverse Laplace transform of

e−2s

s(s2 + 4)

Solution. First we notice that

e−2s

s(s2 + 4)
= e−2s 1

s

1

s2 + 4

= e−2sL
[
1

2

]
(s)L[sin(2t)](s)

= e−2sL
[
1

2
∗ sin(2t)

]
(s)

Since
1

2

∫
sin(2t− 2u)du =

1

4
cos(2t− 2u)

then
1

2
∗ sin(2t) = 1

2

∫ t

0

sin(2t− 2u)du =
1

4
(cos(0)− cos(2t)) =

1

4
(1− cos(2t))

therefore

e−2s

s(s2 + 4)
= e−2sL

[
1

4
(1− cos(2t))

]
(s) = L

[
1

4
(1− cos(2(t− 2)))

]
(s)

so the inverse Lapalce transform is

1

4
(1− cos(2t− 4))

Exercise 11.6:22. Recall that the gamma function can be defined by

Γ(z) =

∫ ∞

0

tz−1e−tdt z > 0

(a) Use integration by parts to show that

Γ(z + 1) = zΓ(z)

(b) deduce from part a that Γ(n+ 1) = n! for n = 0, 1, 2, . . ..
(c) Show that if a > −1 then

L[ta](s) = Γ(a+ 1)

sa+1
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Solution. By integration by parts we see that∫
tze−tdt = −tze−t + z

∫
tz−1e−tdt

therefore

Γ(z + 1) =

∫ ∞

0

tze−tdt =
[
−tze−t

]t=∞
t=0

+ zΓ(z)

hence the result follows once we show that [−tze−t]
t=∞
t=0 = 0. To this end[

−tze−t
]t=∞
t=0

=
(
lim
t→∞

−tze−t
)
+ 0z · e0 = 0

where the limit can be evaluated (for fixed z) using L’hopitals rule a finite number of times.
(b) We prove it by induction; First the basecase n = 0;

Γ(0 + 1) =

∫ ∞

0

t1−1e−tdt =

∫ ∞

0

e−tdt = 1

Now suppose that Γ(n+ 1) = n! then by part (a)

Γ((n+ 1) + 1) = (n+ 1)Γ(n+ 1) = (n+ 1) · n! = (n+ 1)!

(c) Let u = st then du = sdt so

L[ta](s) =
∫ ∞

0

e−sttadt =
1

sa+1

∫ ∞

0

e−uuadu =
1

sa+1
Γ(a+ 1)
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