Exercise 11.5:2. Use integration by parts to verify that

$$
\mathcal{L}[t](s)=\int_{0}^{\infty} t e^{-s t} d t=\frac{1}{s^{2}} \quad \text { for } s>0
$$

Solution.

$$
\int_{0}^{\infty} t e^{-s t} d t \lim _{a \rightarrow \infty} \int_{0}^{a} t e^{-s t} d t=\lim _{a \rightarrow \infty}\left[t \frac{e^{-s t}}{-s}-\frac{e^{-s t}}{s^{2}}\right]_{t=0}^{t=a}=\lim _{a \rightarrow \infty} \frac{1}{s^{2}}-\frac{a}{s e^{s a}}-\frac{1}{s^{2} e^{s a}}=
$$

By L'hopitals rule,

$$
\lim _{a \rightarrow \infty} \frac{a}{s e^{s a}}=\lim _{a \rightarrow \infty} \frac{1}{s^{2} e^{s a}}=0
$$

thus

$$
\mathcal{L}[t](s)=\frac{1}{s^{2}}
$$

Exercise 11.5:8. Compute $\mathcal{L}[\cos (t+a)](s)$.
Solution. Applying integration by parts twice we see that

$$
\int \cos (t+a) e^{-s t} d t=-\cos (t+a) \frac{1}{s} e^{-s t}+\sin (t+a) \frac{1}{s^{2}} e^{-s t}-\int \cos (t+a) \frac{1}{s^{2}} e^{-s t} d t
$$

hence

$$
\int \cos (t+a) e^{-s t} d t=\frac{-\cos (t+a) \frac{1}{s} e^{-s t}+\sin (t+a) \frac{1}{s^{2}} e^{-s t}}{\left(1+\frac{1}{s^{2}}\right)}=e^{-s t} \frac{-\cos (t+a)+\sin (t+a) \frac{1}{s}}{s+\frac{1}{s}}
$$

therefore
$\mathcal{L}[\cos (t+a)](s)=\int_{0}^{\infty} \cos (t+a) e^{-s t} d t=\frac{\cos (a)-\sin (a) \frac{1}{s}}{s+\frac{1}{s}}+\lim _{t \rightarrow \infty} e^{-s t} \frac{-\cos (t+a)+\sin (t+a) \frac{1}{s}}{s+\frac{1}{s}}$
By a straight forward application of the squeeze theorem, the limit converges to zero, hence

$$
\mathcal{L}[\cos (t+a)](s)=\frac{\cos (a)-\sin (a) \frac{1}{s}}{s+\frac{1}{s}}=\frac{s \cos (a)-\sin (a)}{s^{2}+1}
$$

Exercise 11.5:12. Find the inverse Laplace transform of

$$
\frac{2}{s^{2}+4}
$$

Solution. I claim that

$$
\mathcal{L}(\sin (b t))=\frac{b}{s^{2}+b^{2}}
$$

Let us verify; Applying integration by parts twice we see that

$$
\int \sin (b t) e^{-s t} d t=-\sin (b t) \frac{1}{s} e^{-s t}-b \cos (b t) \frac{1}{s^{2}} e^{-s t}-\int b^{2} \sin (b t) \frac{1}{s^{2}} e^{-s t} d t
$$

hence

$$
\int \sin (b t) e^{-s t} d t=-\frac{\sin (b t) \frac{1}{s} e^{-s t}+b \cos (b t) \frac{1}{s^{2}} e^{-s t}}{1+\frac{b^{2}}{s^{2}}}=-e^{-s t} \frac{\sin (b t)+b \cos (b t) \frac{1}{s}}{s+\frac{b^{2}}{s}}
$$

so

$$
\mathcal{L}(\sin (b t))=\int_{0}^{\infty} \sin (b t) e^{-s t} d t=\frac{b \frac{1}{s}}{s+\frac{b^{2}}{s}}+\lim _{t \rightarrow \infty}-e^{-s t} \frac{\sin (b t)+b \cos (b t) \frac{1}{s}}{s+\frac{b^{2}}{s}}
$$

By a straight forward application of the squeeze theorem, the limit converges to zero, hence

$$
\mathcal{L}(\sin (b t))=\frac{b \frac{1}{s}}{s+\frac{b^{2}}{s}}=\frac{b}{s^{2}+b^{2}}
$$

Exercise 11.5:24. Let $P(D)$ be an n th-order linear constant coefficient, differential operator. Show that

$$
\mathcal{L}[P(D) y](s)=P(s) \mathcal{L}[y](s)+Q(s)
$$

for some polynomial Q of degree $n-1$. Use induction.
Solutions. The proof is by induction. For the basecase let $n=1$ then $P(D) y=a y^{\prime}+b y$ for some constants a, b. First remark that by integration by parts we have

$$
\int y e^{-s t} d t=-\frac{y}{s} e^{-s t}+\frac{1}{s} \int y^{\prime} e^{-s t} d t
$$

therefore

$$
s \mathcal{L}[y]-\mathcal{L}\left[y^{\prime}\right]=\lim _{x \rightarrow \infty}\left[-y(t) e^{-s t}\right]_{t=0}^{t=x}=y(0)-\lim _{x \rightarrow \infty} y(x) e^{-s x}
$$

Assuming that the Laplace transforms on the left hand side exists, then the limit on the right hand side converges for all $s>0$. It follows that $\lim _{x \rightarrow \infty} y(x) e^{-s x}=0$ thus

$$
\mathcal{L}[D y]=\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]-y(0)
$$

So therefore

$$
\mathcal{L}[P(D) y](s)=a \mathcal{L}\left[y^{\prime}\right](s)+b \mathcal{L}[y](s)=a(s \mathcal{L}[y]-y(0))+b \mathcal{L}[y](s)=P(s) \mathcal{L}[y]-a y(0)
$$

Since $s \mapsto a y(0)$ is polynomial of degree zero, then this completes the basecase.
For the induction step, let $P(D)$ be a polynomial of degree $n+1$, then by the fundamental theorem of algebra $P(D)=(a D+b) \circ(\tilde{P}(D))$ for some polynomial \tilde{P} of degree atmost n, so

$$
\mathcal{L}[P(D) y](s)=\mathcal{L}[a D \circ \tilde{P}(D) y+b \tilde{P}(D) y](s)=a \mathcal{L}[D \circ \tilde{P}(D) y]+b \mathcal{L}[\tilde{P}(D) y](s)
$$

and by (\star) we have

$$
\mathcal{L}[D \circ \tilde{P}(D) y]=s \mathcal{L}[\tilde{P}(D) y]-(\tilde{P}(D) y)(0)
$$

so

$$
\begin{aligned}
\mathcal{L}[P(D) y](s) & =a(s \mathcal{L}[\tilde{P}(D) y](s)-(\tilde{P}(D) y)(0))+b \mathcal{L}[\tilde{P}(D) y](s) \\
& =(a s+b) \mathcal{L}[\tilde{P}(D) y](s)-a \cdot(\tilde{P}(D) y)(0)
\end{aligned}
$$

By the induction hypothesis

$$
\mathcal{L}[\tilde{P}(D) y](s)=\tilde{P}(s) \mathcal{L}[y](s)+Q(s)
$$

for some polynomial Q of degree $n-1$. Therefore

$$
\begin{aligned}
\mathcal{L}[P(D) y](s) & =(a s+b) \cdot(\tilde{P}(s) \mathcal{L}[y](s)+Q(s))-a \cdot(\tilde{P}(D) y)(0) \\
& =P(s) \mathcal{L}[y](s)+(a s+b) \cdot Q(s)-a \cdot(\tilde{P}(D) y)(0)
\end{aligned}
$$

Since Q is polynomial of degree $n-1$ then $s \mapsto(a s+b) \cdot Q(s)-a \cdot(\tilde{P}(D) y)(0)$ is a polynomial of degree n. This completes the induction step.

Exercise 11.6:2. Compute the convolution

$$
t^{2} *\left(t^{2}+1\right)
$$

Solution.

$$
\begin{aligned}
t^{2} *\left(t^{2}+1\right) & =\int_{0}^{t} u^{2} \cdot\left((t-u)^{2}+1\right) d u=\int_{0}^{t} u^{2} \cdot\left(t^{2}+u^{2}-2 u t+1\right) d u \\
& =\int_{0}^{t} u^{2} t^{2}+u^{4}-2 u^{3} t+u^{2} d u \\
& =\left[\frac{u^{3}}{3} t^{2}+\frac{u^{5}}{5}-\frac{2 u^{4}}{4} t+\frac{u^{3}}{3}\right]_{u=0}^{u=t} \\
& =\frac{t^{3}}{3} t^{2}+\frac{t^{5}}{5}-\frac{t^{4}}{2} t+\frac{t^{3}}{3} \\
& =t^{5}\left(\frac{10}{30}+\frac{6}{30}-\frac{15}{30}\right)+\frac{t^{3}}{3} \\
& =\frac{t^{5}}{30}+\frac{t^{3}}{3}
\end{aligned}
$$

Exercise 11.6:8. Using convolution compute the inverse Laplace transform of

$$
\frac{1}{\left(s^{2}+1\right)(s-1)}
$$

Solutions.

$$
\frac{1}{\left(s^{2}+1\right)(s-1)}=\frac{1}{\left(s^{2}+1\right)} \frac{1}{(s-1)}=\mathcal{L}[\sin (t)](s) \mathcal{L}\left[e^{t}\right](s)=\mathcal{L}\left[\sin (t) * e^{t}\right]
$$

so it suffices to compute the convolution

$$
\sin (t) * e^{t}=\int_{0}^{t} \sin (u) \cdot e^{t-u} d u=e^{t} \int_{0}^{t} \sin (u) \cdot e^{-u} d u
$$

Applying integration by parts twice, we see that

$$
\int \sin (u) e^{-u} d u=-\sin (u) e^{-u}-\cos (u) e^{-u}-\int \sin (u) e^{-u} d u
$$

so

$$
\int_{0}^{t} \sin (u) \cdot e^{-u} d u=\left[\frac{-1}{2}\left(\sin (u) e^{-u}+\cos (u) e^{-u}\right)\right]_{u=0}^{u=t}=\frac{-1}{2}\left((\sin (t)+\cos (t)) e^{-t}-1\right)
$$

therefore

$$
\sin (t) * e^{t}=\frac{-1}{2}\left(\sin (t)+\cos (t)-e^{t}\right)=\frac{1}{2}\left(e^{t}-\sin (t)-\cos (t)\right)
$$

Exercise 11.6:10. Compute the inverse Laplace transform of

$$
\frac{e^{-2 s}}{s\left(s^{2}+4\right)}
$$

Solution. First we notice that

$$
\begin{aligned}
\frac{e^{-2 s}}{s\left(s^{2}+4\right)} & =e^{-2 s} \frac{1}{s} \frac{1}{s^{2}+4} \\
& =e^{-2 s} \mathcal{L}\left[\frac{1}{2}\right](s) \mathcal{L}[\sin (2 t)](s) \\
& =e^{-2 s} \mathcal{L}\left[\frac{1}{2} * \sin (2 t)\right](s)
\end{aligned}
$$

Since

$$
\frac{1}{2} \int \sin (2 t-2 u) d u=\frac{1}{4} \cos (2 t-2 u)
$$

then

$$
\frac{1}{2} * \sin (2 t)=\frac{1}{2} \int_{0}^{t} \sin (2 t-2 u) d u=\frac{1}{4}(\cos (0)-\cos (2 t))=\frac{1}{4}(1-\cos (2 t))
$$

therefore

$$
\frac{e^{-2 s}}{s\left(s^{2}+4\right)}=e^{-2 s} \mathcal{L}\left[\frac{1}{4}(1-\cos (2 t))\right](s)=\mathcal{L}\left[\frac{1}{4}(1-\cos (2(t-2)))\right](s)
$$

so the inverse Lapalce transform is

$$
\frac{1}{4}(1-\cos (2 t-4))
$$

Exercise 11.6:22. Recall that the gamma function can be defined by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \quad z>0
$$

(a) Use integration by parts to show that

$$
\Gamma(z+1)=z \Gamma(z)
$$

(b) deduce from part a that $\Gamma(n+1)=n$! for $n=0,1,2, \ldots$.
(c) Show that if $a>-1$ then

$$
\mathcal{L}\left[t^{a}\right](s)=\frac{\Gamma(a+1)}{s^{a+1}}
$$

Solution. By integration by parts we see that

$$
\int t^{z} e^{-t} d t=-t^{z} e^{-t}+z \int t^{z-1} e^{-t} d t
$$

therefore

$$
\Gamma(z+1)=\int_{0}^{\infty} t^{z} e^{-t} d t=\left[-t^{z} e^{-t}\right]_{t=0}^{t=\infty}+z \Gamma(z)
$$

hence the result follows once we show that $\left[-t^{z} e^{-t}\right]_{t=0}^{t=\infty}=0$. To this end

$$
\left[-t^{z} e^{-t}\right]_{t=0}^{t=\infty}=\left(\lim _{t \rightarrow \infty}-t^{z} e^{-t}\right)+0^{z} \cdot e^{0}=0
$$

where the limit can be evaluated (for fixed z) using L'hopitals rule a finite number of times.
(b) We prove it by induction; First the basecase $n=0$;

$$
\Gamma(0+1)=\int_{0}^{\infty} t^{1-1} e^{-t} d t=\int_{0}^{\infty} e^{-t} d t=1
$$

Now suppose that $\Gamma(n+1)=n$! then by part (a)

$$
\Gamma((n+1)+1)=(n+1) \Gamma(n+1)=(n+1) \cdot n!=(n+1)!
$$

(c) Let $u=s t$ then $d u=s d t$ so

$$
\mathcal{L}\left[t^{a}\right](s)=\int_{0}^{\infty} e^{-s t} t^{a} d t=\frac{1}{s^{a+1}} \int_{0}^{\infty} e^{-u} u^{a} d u=\frac{1}{s^{a+1}} \Gamma(a+1)
$$

