Exercise 11.1:12. Determine the general solution to the following differential equation. Then determine the specific solution

$$
y^{\prime \prime}-3 y-y=0 \quad \text { with } \quad y(0)=0 \text { and } y(1)=0
$$

Solution. Let $x(t)=y^{\prime}(t)$ then

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)+y(t) \\
y^{\prime}(t) & =x(t)
\end{aligned}
$$

Concisely this can be written as

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right)\binom{x(t)}{y(t)}=A\binom{x(t)}{y(t)}
$$

We compute the eigenvalues

$$
\operatorname{det}\left(A-\lambda_{ \pm} I\right)=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & 1 \\
1 & -\lambda
\end{array}\right)=-\lambda(3-\lambda)-1=\lambda^{2}-3 \lambda-1=0
$$

so

$$
\lambda_{ \pm}=\frac{3}{2} \pm \frac{\sqrt{13}}{2}
$$

Since the eigenvalues are distinct, then A can be diagonalized. By definition an eigenvector, is any vector satisfying $A v_{ \pm}=\lambda_{ \pm} v_{ \pm}$so $v_{ \pm} \in \operatorname{Ker}\left(A-\lambda_{ \pm} I\right)$ hence

$$
v_{ \pm}=\binom{\lambda_{ \pm}-3}{1}
$$

are eigenvectors. Now by diagonalization the general solution is given by

$$
\binom{x(t)}{y(t)}=c_{+} v_{+} e^{\lambda_{+} t}+c_{-} v_{-} e^{\lambda-t}=e^{\frac{3}{2} t} \cdot\binom{c_{+}\left(-\frac{3}{2}+\frac{\sqrt{13}}{2}\right) e^{\frac{\sqrt{13}}{2} t}+c_{-}\left(-\frac{3}{2}-\frac{\sqrt{13}}{2}\right) e^{-\frac{\sqrt{13}}{2} t}}{c_{+} e^{\frac{\sqrt{13}}{2} t}+c_{-} e^{-\frac{\sqrt{13}}{2} t}}
$$

We now determine a specific solution. Since $y(0)=0$ then $c_{+}+c_{-}=0$ so $c_{-}=-c_{+}$. Since $y(1)=0$ then

$$
c_{+}\left(e^{\frac{\sqrt{13}}{2}}-e^{-\frac{\sqrt{13}}{2}}\right)=0
$$

so $c_{+}=0$.
Exercise 11.2A:18. Determine the general solution to the following differential equation. Then determine the specific solution

$$
y^{\prime \prime}-y^{\prime}+y=0 \quad \text { with } \quad y(0)=2 \text { and } y^{\prime}(0)=-1
$$

Solution. Let $x(t)=y^{\prime}(t)$ then

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-y(t) \\
y^{\prime}(t) & =x(t)
\end{aligned}
$$

Concisely this can be written as

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\binom{x(t)}{y(t)}=A\binom{x(t)}{y(t)}
$$

We compute the eigenvalues

$$
\operatorname{det}\left(A-\lambda_{ \pm} I\right)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -1 \\
1 & -\lambda
\end{array}\right)=-\lambda(1-\lambda)+1=\lambda^{2}-\lambda+1=0
$$

so

$$
\lambda_{ \pm}=\frac{1}{2} \pm \frac{\sqrt{-3}}{2}=\frac{1}{2} \pm \frac{\sqrt{3} i}{2}
$$

Since the eigenvalues are distinct, then A can be diagonalized over \mathbb{C}. By definition an eigenvector, is any vector satisfying $A v_{ \pm}=\lambda_{ \pm} v_{ \pm}$so $v_{ \pm} \in \operatorname{Ker}\left(A-\lambda_{ \pm} I\right)$ hence

$$
v_{ \pm}=\binom{\lambda_{ \pm}}{1}
$$

are eigenvectors. Now by diagonalization the general solution is given by

$$
\binom{x(t)}{y(t)}=c_{+} v_{+} e^{\lambda_{+} t}+c_{-} v_{-} e^{\lambda_{-} t}
$$

Using standard trigonmetric identities we see that

$$
y(t)=e^{\frac{1}{2} t}\left(\left(c_{+}+c_{-}\right) \cos \left(\frac{\sqrt{3}}{2} t\right)+\left(c_{+}-c_{-}\right) i \sin \left(\frac{\sqrt{3}}{2} t\right)\right)
$$

Since $y(0)=2$ then $c_{+}+c_{-}=2$. Now $x(0)=-1$ so

$$
-1=\left(c_{+}\right)\left(\frac{1}{2}+\frac{\sqrt{3} i}{2}\right)+c_{-}\left(\frac{1}{2}-\frac{\sqrt{3} i}{2}\right)=\left(c_{+}+c_{-}\right) \frac{1}{2}+\left(c_{+}-c_{-}\right) \frac{\sqrt{3} i}{2}
$$

hence

$$
\left(c_{+}-c_{-}\right)=\frac{4 i}{\sqrt{3}}
$$

thus

$$
y(t)=e^{\frac{1}{2} t}\left(2 \cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{4}{\sqrt{3}} \sin \left(\frac{\sqrt{3}}{2} t\right)\right)
$$

Exercise 11.2A:46. Let $y(x)$ be a solution of a second-order equation $y^{\prime \prime}+a y^{\prime}+b y=0$. Can constants a and b be chosen so that $y(x)=x \cos (x)$? What about the function $y(x)=$ $\sin (x)+\cos (2 x)$? Justify your answers.

Solution. Suppose $y(x)=x \cos (x)$ then

$$
\begin{aligned}
y(x) & =x \cos (x) \\
y^{\prime}(x) & =\cos (x)-x \sin (x) \\
y^{\prime \prime}(x) & =-2 \sin (x)-x \cos (x)
\end{aligned}
$$

so

$$
0=y^{\prime \prime}(x)+a y^{\prime}(x)+b y=-2 \sin (x)-x \cos (x)+a(\cos (x)-x \sin (x))+b x \cos (x)
$$

for all x. If $x=0$ then $a=0$. On the otherhand if $x=\frac{\pi}{2}$ then

$$
-2-a\left(\frac{\pi}{2}\right)=0
$$

so $a=-\frac{4}{\pi} \neq 0$. Therefore y cannot be solution to the second-order equation $y^{\prime \prime}+a y^{\prime}+b y=0$.
Suppose $y(x)=\sin (x)+\cos (2 x)$ then

$$
\begin{aligned}
y(x) & =\sin (x)+\cos (2 x) \\
y^{\prime}(x) & =\cos (x)-2 \sin (2 x) \\
y^{\prime \prime}(x) & =-\sin (x)-4 \cos (2 x)
\end{aligned}
$$

SO
$0=y^{\prime \prime}(x)+a y^{\prime}(x)+b y(x)=-\sin (x)-4 \cos (2 x)+a(\cos (x)-2 \sin (2 x))+b(\sin (x)+\cos (2 x))$
for all x. Consider $x=\frac{\pi}{2}$ then

$$
y^{\prime \prime}(x)+a y^{\prime}(x)+b y(x)=-1+4=3 \neq 0
$$

Therefore y cannot be solution to the second-order equation $y^{\prime \prime}+a y^{\prime}+b y=0$.
Exercise 11.2B:20. Find real constant coefficient linear differential equation of the smallest possible order that has the function $y(x)$ as solution.

$$
y(x)=x \cos (4 x)
$$

Proof. The smallest possible order is 4. To see this rewrite the equation in to a system of linear differential equations. First we observe that the system must have atleast 1 purely imaginary eigenvalue and that this eigenvalue must be repeated. But complex eigenvalues comes in conjugated pairs, and as such the degree must be atleast 4 .

$$
\begin{aligned}
y(x) & =x \cos (4 x) \\
y^{\prime}(x) & =\cos (4 x)-4 x \sin (4 x) \\
y^{\prime \prime}(x) & =-8 \sin (4 x)-16 x \cos (4 x) \\
y^{\prime \prime \prime}(x) & =-48 \cos (4 x)+64 x \sin (4 x) \\
y^{\prime \prime \prime \prime}(x) & =-256 \sin (4 x)+256 x \cos (4 x)
\end{aligned}
$$

From which it is easy to see that

$$
y^{\prime \prime \prime \prime}(x)+32 \cdot y^{\prime \prime}(x)+256 y(x)=0
$$

