MAT 308 - Homework 4 Solutions Filip Samuelsen

Exercise 3.4:21. Define a function G from C(R) to C'(R) by

Glu)(z) = / fu(t)dt
0
Show that G is linear. Show that G is one-to-one. Describe the image under G of the subspace

of P,, consisting of all polynomials of degree atmost n. Describe the image under G of all of P.
Describe the inverse of G. Find an element of P that is not in the image of G.

Solution. Let o, 8 € R and let u,v € C(R) then

G(au+ pv) = / t(au(t) + Bo(t))dt = oz/ tu(t)dt + B/ v(t)dt = aG(u) + G(v)

0 0 0
so @G is linear. Suppose G(u) = 0 then
/ tu(t)dt = 0
0
for every z € R hence u(t) = 0. So Ker(G) = 0 so G is injective. Let u = >_;'_, arz® then
r n n k42 n
= gt = - Bk ph+2
G = [ > a I M

so the image consists of polynomials of the form v = Zig apz®. For all polynomials similar

reasons gives that the image consists of all polynomials ZQ;O apz® with ag = a; = 0.

The problem is stupid because there is no such thing as ”the” inverse since G is not surjective.
But as it is injective there is a left sided inverse. Let f be in the image of G, then f is C?!,
f(0) = 0 and by the fundamental theorem of calculus f’(z) = 0 so let uy(z) = @ for z #£ 0
and u¢(0) = 0 then

6tu) = [ttt = [ i = 1) - 50) = 10

So define a left sided inverse F' : C(R) — C(R) by F(f) = uy for f in the image of G and
F(f) =0 for f not in the image of G.
Finally notice that f(z) =1 is certainly in P, but

0
G(u)(0) = /0 tu(t)dt =0

so f is not in the image. O

Exercise 3.5B:4. Show that the given set of vectors forms a basis for R? of dimension 3 by
showing (a) spanning, and (b) independence.

{(1,2,3),(0,0,1),(2,2,4)}

Solution. Tt suffices to show that the 3 standard basis vectors of R? are in the span of {(1,2,3), (0,0, 1), (2,2,4)}.
Clearly es is in the span, thus
(1,2,0) and (2,2,0)
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are also in the span so
(17 07 O) = (2’ 27 0) - (17 2) O)

is in the span, but then

(0.1,0) = 5 ((1.2,0) ~ (1,0,0))

which completes the proof. Independence is obvious by dimension counting. O

Exercise 3.5B:15. Find the dimension of the subspaces of R? spanned by the given vectors.

{(_1’ 1)’ (17 _1)}

Solution. Since —1(—1,1) = (1, —1) then the two vectors are linear dependent and since neither
is zero, then the dimension of the subspace spanned is 1. O

Exercise 3.5B:41. Let S be the shift operator defined on the vector space P, of polynomials
of degree at most 2 by S(p)(x) = p(x +1). (a) Show that S is a linear operator. Show that
S=1+D+ %D2, where D = £, and I stands for the identity operator. (c) Show that
on P, the space of polynomials of degree at most n, the shift operator is related to D by
S=14+D+4D*+ .-+ 4D".

Solution. (a) Let o, 8 € R and p, q € Pz then
S(ap+ Bq) = ap(z + 1) + Bq(z + 1) = aS(p) + BS(q)

so p, q are linear. (b) it suffices to check the idenity on a basis so
1
S(1)=1=1(1)+ D(1) + 5D2(1)
1
S@)=z+1=I(x)+Dx+1)+ §D2(3:—|— 1)

S(x?) = (x+ 1) =2% 4+ 2z +1 = I(2*) + D(z?) + %D2(x +1)

More generally by the binomial theorem we have

k-(k—1 k!
S(z*) = (x + 1)F = 2% 4 kb1 —l—i(z )xk_l +~-'+Exk_’“

O

Exercise 3.5C:3. Show that if f is a one-to-one linear function, then the set {f(x1), ..., f(xx)}
is linearly independent if and only if {z1, ..., 2} is linearly independent. What does this imply
about the dimensions of the image and domain of f?

Solution. Suppose that
arf(z1) + - +apf(zg) =0

then by linearity
flogzy + -+ agay) =0

since f is injective then ker(f) = {0} so

a1r1+ -t agx, =0
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hence by linearly independence of {z1,...,z;} we have oy = --- = o, = 0.
Conversely suppose that
ai1xy + -+ oz =0
then
flaazr + -+ agzg) = f(0) =0
then by linearity
arf(zy) +- +apf(zr) =0

Since {f(z1), ..., f(x)} is linearly independent then oy = -+ = a = 0.
This implies that if the vector space is finite dimensional and f is injective, then the dimension
of of the image of f equals the dimension of the domain. O

Exercise 3.5C:10. Assume V and W are finite dimensional and that f : V' — W is linear.
Prove that if IV is the kernel of f, then there is a subspace S of V such that S h N, SN N = {0},
and f restricted to S is one-to-one.

Solution. Let n be the dimension of V' and let {v1,..., v} be a basis for N and extend it with
{Vk41,.--,0n} to a basis for V. Then

S = Span({vk-‘rl, sy Un})
Suppose w € S N N, then there exists aq,...,ar and §1,..., B,_; such that

a1vy + -+ apvp = w = Brgyr + -+ Brokn

hence
vy + -+ v — 1okt — 0 — Bu—gUn = 0
Since vy, ..., Vg, Vk41,--., Uy is & basis for V', then they are linearly independent so
ap=-=ap=p == =0

hence w = 0 so SN N = {0}. Now Ker(f|s) = SNKer(f) = SNN = {0} so f|g is injective. [J

Exercise 3.6A:4. Find all the eigenvalues of each of the linear operators defined by the following
matrices, and for each eigenvalue find an associated eigenvector.

01
4= )
Solution. The eigenvalues are given by

det (0A o ! A)) —A2- )

so A1 = 0 and Ay = 2. Since

S0 vy = <(1)> Likewise

S0 V1 = (i) O
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Exercise 3.6A:13. Find all the eigenvalues of

o-(: )

show that the associated eigenvectors span R?, and describe the action of G, as in example 2.

Solution. The eigenvalues are given by

det(ll/\ (1E>\)>:(1—)\)2—2

soAp =1+ V2 and \_ = 1—+/2. Since the eigenvalues are real and distinct, then the associated
eigenvectors span R?. The action of G is simply that it expands vectors along v by a factor of
1+ +/2 and contracts vectors along v_ by 1 — V2. O

Exercise 3.6A:14. Solve the system of differential equations using eigenvalues and eigenvectors
as in Example 5 in the text.
ar (1 4\ .
@\ 1)”
Solution. The eigenvalues are given by
1—A 4 _ 9
det( 1 (1)\)>—(1—)\) —4

soAf =14+2=3and A\_ =1—-2=—1. Since

() () =2()
b)) ()

-2 L
then v_ = ( 1 ) so the general solution is given by

then vy = (? and since

3t —t
. 3¢ ¢ 2cype’t —2c_e
Z(t) =civie” +c_v_e " = _
(1) = ey (++

for some constants ¢, and c_. O

Exercise 3.6B:4. Find all the eigenvalues of the linear operators defined by the following matrix
and state whether or not Theorem 6.7 guarantees a basis of eigenvectors. If not determines if a
basis of eigenvectors exists

010
A=10 0 1
1 00
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Solution.
det(A—M)=1- A3

so the eigenvalues are the 3 cubic roots of 1. Since only 1 of these roots are real then A is not
diagonalizeable over R. Treating A as a complex matrix, then all the eigenvalues are distinct so
A is diagonalizeable over C. (Remark: Being diagonalizeable over R (respectively C is the same
has having a basis for R™ (respectively C™) consisting of eigenvectors) O

Exercise 3.6B:8. Show that the matrix

cosf) —sinf
Ry = (sin@ cos 0 >

has complex associated independent complex eigenvaules. Also find associated independent com-
plex eigenvectors.

Solution.
det(Rg — M) = (cosf — \)? + (sin#)?> =0

S0 A+ = cos @ £ isinf. Notice that
cos) —sind 1\ [cosO@Fisinf\ . 1
(sin@ cos ) (j:z) o (sin9 +icos 6’) = (cos ) F isin6) (j:z)

. . 1
so the eigenvectors are given by vy = <:Fz) O

Exercise 3.7A:10. Let V be a 2-dimensional vector space with an inner product and a basis
{u,v}, and let (u,u) = a, (u,v) = b, and (v,v) = c. (a) Let z = pu+ qv and y = ru + sv be
vectors in V. Use additivity and homogeneity of the inner product to show that

wi=0 a5 1) (%)

(b) Show that @ > 0 and ¢ > 0 and that the Cauchy-Schwarz inequality implies that b? < ac (c)
Show that if a,b and c satisfy the conditions of part (b) and (z,y) is defined by the formula in
part (a) then (x,y) satisfies the conditions for being an inner product. [Hint: To show positivity,
write out (x,x) in terms of a, b, ¢,p and ¢ and use the technique of completing the square.]

Solution.
(z,y) = (pu+ qu,ru + sv) = pr(u, u) + gs(v,v) + (ps + 7¢)(u, v)

—pratase+ sran = o) (5 0) (%)

c) \s
Recall that the Cauchy-Schwarz inequality states
[z, y)” < (z,2) - (y,9)
with equality if and only if z = Ay for some scalar A. Using our computation form above we have
(pra+gsc+ (ps +1q)b)* < (P*a + ¢°c + (2pg)b) - (r®a + s*c+ (2rs)b)
Taking p=s =1 and r = ¢ = 0 we see that

b < ac
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For (c¢) bilinearity and symmetry is clear from the definition of matrix multiplication. It remains

to check positivity
0 a) (¢ °)(7) = pa+aie+ oo
poa)ly o)) =Pat et (2pg)

so positivity would follow if we show that whenever (p, q) # (0,0) then
2pqlb] < p*a +¢*c

Recall that

0 < (pva— qv/e)® = p’a+ q*c — 2pg\/ac
SO
2pgy/ac < p*a + ¢°c

since b? < ac then |b| < y/ac so
2pq|b| < 2pgv/ac < p*a + ¢°c
O

Exercise 3.7B:2. The vectors (1,1,1) and (1,2, 1) span a plane P in R3. Use the Gram-Schmidt
process to find an orthogonal basis for R3 in which the first two vectors form an orthogonal basis
for P.

Solution. First we compute a orthogonal basis. Let u; = (1,1,1)/4/3 and

vo = (1,2,1) — ((1,2,1) @ uq) - ug

- 15271 Y~ Ut B~ B~
( ) \/3(\/3\/3\/3)
4 4 4 -1 2 -1
=(1,2,1) = (=,=,2)=(—, 2, —
1L21)- G55 =555
then we normalise
Vg 3 -1 2 -1 -1 -1
= S(—— 2 _y=(—.1.—=
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