Exercise 3.4:21. Define a function G from $C(\mathbb{R})$ to $C(\mathbb{R})$ by

$$
G(u)(x)=\int_{0}^{x} t u(t) d t
$$

Show that G is linear. Show that G is one-to-one. Describe the image under G of the subspace of \mathcal{P}_{n} consisting of all polynomials of degree atmost n. Describe the image under G of all of \mathcal{P}. Describe the inverse of G. Find an element of \mathcal{P} that is not in the image of G.

Solution. Let $\alpha, \beta \in \mathbb{R}$ and let $u, v \in C(\mathbb{R})$ then

$$
G(\alpha u+\beta v)=\int_{0}^{x} t(\alpha u(t)+\beta v(t)) d t=\alpha \int_{0}^{x} t u(t) d t+\beta \int_{0}^{x} v(t) d t=\alpha G(u)+\beta G(v)
$$

so G is linear. Suppose $G(u)=0$ then

$$
\int_{0}^{x} t u(t) d t=0
$$

for every $x \in \mathbb{R}$ hence $u(t) \equiv 0$. So $\operatorname{Ker}(G)=0$ so G is injective. Let $u=\sum_{k=0}^{n} a_{k} x^{k}$ then

$$
G(u)(x)=\int_{0}^{x} \sum_{k=0}^{n} a_{k} t^{k+1} d t=\sum_{k=0}^{n} a_{k} \frac{x^{k+2}}{k+2}=\sum_{k=0}^{n} \frac{a_{k}}{k+2} x^{k+2}
$$

so the image consists of polynomials of the form $v=\sum_{k=2}^{n+2} a_{k} x^{k}$. For all polynomials similar reasons gives that the image consists of all polynomials $\sum_{k=0}^{N} a_{k} x^{k}$ with $a_{0}=a_{1}=0$.

The problem is stupid because there is no such thing as "the" inverse since G is not surjective. But as it is injective there is a left sided inverse. Let f be in the image of G, then f is C^{1}, $f(0)=0$ and by the fundamental theorem of calculus $f^{\prime}(x)=0$ so let $u_{f}(x)=\frac{f^{\prime}(x)}{x}$ for $x \neq 0$ and $u_{f}(0)=0$ then

$$
G(u)=\int_{0}^{x} t u_{f}(t) d t=\int_{0}^{x} f^{\prime}(x) d t=f(x)-f(0)=f(x)
$$

So define a left sided inverse $F: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ by $F(f)=u_{f}$ for f in the image of G and $F(f)=0$ for f not in the image of G.

Finally notice that $f(x)=1$ is certainly in \mathcal{P}, but

$$
G(u)(0)=\int_{0}^{0} t u(t) d t=0
$$

so f is not in the image.
Exercise 3.5B:4. Show that the given set of vectors forms a basis for \mathbb{R}^{3} of dimension 3 by showing (a) spanning, and (b) independence.

$$
\{(1,2,3),(0,0,1),(2,2,4)\}
$$

Solution. It suffices to show that the 3 standard basis vectors of \mathbb{R}^{3} are in the span of $\{(1,2,3),(0,0,1),(2,2,4)\}$. Clearly e_{3} is in the span, thus

$$
(1,2,0) \text { and }(2,2,0)
$$

are also in the span so

$$
(1,0,0)=(2,2,0)-(1,2,0)
$$

is in the span, but then

$$
(0,1,0)=\frac{1}{2}((1,2,0)-(1,0,0))
$$

which completes the proof. Independence is obvious by dimension counting.
Exercise 3.5B:15. Find the dimension of the subspaces of \mathbb{R}^{2} spanned by the given vectors.

$$
\{(-1,1),(1,-1)\}
$$

Solution. Since $-1(-1,1)=(1,-1)$ then the two vectors are linear dependent and since neither is zero, then the dimension of the subspace spanned is 1 .

Exercise 3.5B:41. Let S be the shift operator defined on the vector space \mathcal{P}_{2} of polynomials of degree at most 2 by $S(p)(x)=p(x+1)$. (a) Show that S is a linear operator. Show that $S=I+D+\frac{1}{2} D^{2}$, where $D=\frac{d}{d x}$, and I stands for the identity operator. (c) Show that on \mathcal{P}_{n} the space of polynomials of degree at most n, the shift operator is related to D by $S=1+D+\frac{1}{2!} D^{2}+\cdots+\frac{1}{n!} D^{n}$.
Solution. (a) Let $\alpha, \beta \in \mathbb{R}$ and $p, q \in \mathcal{P}_{2}$ then

$$
S(\alpha p+\beta q)=\alpha p(x+1)+\beta q(x+1)=\alpha S(p)+\beta S(q)
$$

so p, q are linear. (b) it suffices to check the idenity on a basis so

$$
\begin{array}{r}
S(1)=1=I(1)+D(1)+\frac{1}{2} D^{2}(1) \\
S(x)=x+1=I(x)+D(x+1)+\frac{1}{2} D^{2}(x+1) \\
S\left(x^{2}\right)=(x+1)^{2}=x^{2}+2 x+1=I\left(x^{2}\right)+D\left(x^{2}\right)+\frac{1}{2} D^{2}(x+1)
\end{array}
$$

More generally by the binomial theorem we have

$$
S\left(x^{k}\right)=(x+1)^{k}=x^{k}+k x^{k-1}+\frac{k \cdot(k-1)}{2} x^{k-1}+\cdots+\frac{k!}{k!} x^{k-k}
$$

Exercise 3.5C:3. Show that if f is a one-to-one linear function, then the set $\left\{f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\}$ is linearly independent if and only if $\left\{x_{1}, \ldots, x_{k}\right\}$ is linearly independent. What does this imply about the dimensions of the image and domain of f ?

Solution. Suppose that

$$
\alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{k} f\left(x_{k}\right)=0
$$

then by linearity

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=0
$$

since f is injective then $\operatorname{ker}(f)=\{0\}$ so

$$
\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=0
$$

hence by linearly independence of $\left\{x_{1}, \ldots, x_{k}\right\}$ we have $\alpha_{1}=\cdots=\alpha_{k}=0$.
Conversely suppose that

$$
\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=0
$$

then

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=f(0)=0
$$

then by linearity

$$
\alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{k} f\left(x_{k}\right)=0
$$

Since $\left\{f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\}$ is linearly independent then $\alpha_{1}=\cdots=\alpha_{k}=0$.
This implies that if the vector space is finite dimensional and f is injective, then the dimension of of the image of f equals the dimension of the domain.

Exercise 3.5C:10. Assume V and W are finite dimensional and that $f: V \rightarrow W$ is linear. Prove that if N is the kernel of f, then there is a subspace S of V such that $S \pitchfork N, S \cap N=\{0\}$, and f restricted to S is one-to-one.

Solution. Let n be the dimension of V and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for N and extend it with $\left\{v_{k+1}, \ldots, v_{n}\right\}$ to a basis for V. Then

$$
S=\operatorname{span}\left(\left\{v_{k+1}, \ldots, v_{n}\right\}\right)
$$

Suppose $w \in S \cap N$, then there exists $\alpha_{1}, \ldots, \alpha_{k}$ and $\beta_{1}, \ldots, \beta_{n-k}$ such that

$$
\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}=w=\beta_{1} v_{k+1}+\cdots+\beta_{n-k} v_{n}
$$

hence

$$
\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}-\beta_{1} v_{k+1}-\cdots-\beta_{n-k} v_{n}=0
$$

Since $v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}$ is a basis for V, then they are linearly independent so

$$
\alpha_{1}=\cdots=\alpha_{k}=\beta_{1}=\cdots=\beta_{n-k}=0
$$

hence $w=\overrightarrow{0}$ so $S \cap N=\{0\}$. Now $\operatorname{Ker}\left(\left.f\right|_{S}\right)=S \cap \operatorname{Ker}(f)=S \cap N=\{0\}$ so $\left.f\right|_{S}$ is injective.
Exercise 3.6A:4. Find all the eigenvalues of each of the linear operators defined by the following matrices, and for each eigenvalue find an associated eigenvector.

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)
$$

Solution. The eigenvalues are given by

$$
\operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
0 & (2-\lambda)
\end{array}\right)=-\lambda(2-\lambda)
$$

so $\lambda_{1}=0$ and $\lambda_{2}=2$. Since

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)\binom{1}{0}=\binom{0}{0}=0 \cdot\binom{1}{0}
$$

so $v_{0}=\binom{1}{0}$ Likewise

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)\binom{1}{2}=\binom{2}{4}=2 \cdot\binom{1}{2}
$$

so $v_{1}=\binom{2}{4}$

Exercise 3.6A:13. Find all the eigenvalues of

$$
G=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)
$$

show that the associated eigenvectors span \mathbb{R}^{2}, and describe the action of G, as in example 2 .
Solution. The eigenvalues are given by

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
1 & (1-\lambda)
\end{array}\right)=(1-\lambda)^{2}-2
$$

so $\lambda_{+}=1+\sqrt{2}$ and $\lambda_{-}=1-\sqrt{2}$. Since the eigenvalues are real and distinct, then the associated eigenvectors span \mathbb{R}^{2}. The action of G is simply that it expands vectors along v_{+}by a factor of $1+\sqrt{2}$ and contracts vectors along v_{-}by $1-\sqrt{2}$.

Exercise 3.6A:14. Solve the system of differential equations using eigenvalues and eigenvectors as in Example 5 in the text.

$$
\frac{d \vec{x}}{d t}=\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right) \vec{x}
$$

Solution. The eigenvalues are given by

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 4 \\
1 & (1-\lambda)
\end{array}\right)=(1-\lambda)^{2}-4
$$

so $\lambda_{+}=1+2=3$ and $\lambda_{-}=1-2=-1$. Since

$$
\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right)\binom{2}{1}=3\binom{2}{1}
$$

then $v_{+}=\binom{2}{1}$ and since

$$
\left(\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right)\binom{-2}{1}=-1\binom{-2}{1}
$$

then $v_{-}=\binom{-2}{1}$ so the general solution is given by

$$
\vec{x}(t)=c_{+} v_{+} e^{3 t}+c_{-} v_{-} e^{-t}=\binom{2 c_{+} e^{3 t}-2 c_{-} e^{-t}}{c_{+} e^{3 t}+c_{-} e^{-t}}
$$

for some constants c_{+}and c_{-}.
Exercise 3.6B:4. Find all the eigenvalues of the linear operators defined by the following matrix and state whether or not Theorem 6.7 guarantees a basis of eigenvectors. If not determines if a basis of eigenvectors exists

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Solution.

$$
\operatorname{det}(A-\lambda I)=1-\lambda^{3}
$$

so the eigenvalues are the 3 cubic roots of 1 . Since only 1 of these roots are real then A is not diagonalizeable over \mathbb{R}. Treating A as a complex matrix, then all the eigenvalues are distinct so A is diagonalizeable over \mathbb{C}. (Remark: Being diagonalizeable over \mathbb{R} (respectively \mathbb{C} is the same has having a basis for \mathbb{R}^{n} (respectively \mathbb{C}^{n}) consisting of eigenvectors)

Exercise 3.6B:8. Show that the matrix

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

has complex associated independent complex eigenvaules. Also find associated independent complex eigenvectors.
Solution.

$$
\operatorname{det}\left(R_{\theta}-\lambda I\right)=(\cos \theta-\lambda)^{2}+(\sin \theta)^{2}=0
$$

so $\lambda_{ \pm}=\cos \theta \pm i \sin \theta$. Notice that

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{1}{ \pm i}=\binom{\cos \theta \mp i \sin \theta}{\sin \theta \pm i \cos \theta}=(\cos \theta \mp i \sin \theta)\binom{1}{ \pm i}
$$

so the eigenvectors are given by $v_{ \pm}=\binom{1}{\mp i}$.
Exercise 3.7A:10. Let V be a 2 -dimensional vector space with an inner product and a basis $\{u, v\}$, and let $(u, u)=a,(u, v)=b$, and $(v, v)=c$. (a) Let $x=p u+q v$ and $y=r u+s v$ be vectors in V. Use additivity and homogeneity of the inner product to show that

$$
\langle x, y\rangle=\left(\begin{array}{ll}
p & q
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{r}{s}
$$

(b) Show that $a>0$ and $c>0$ and that the Cauchy-Schwarz inequality implies that $b^{2}<a c$ (c) Show that if a, b and c satisfy the conditions of part (b) and (x, y) is defined by the formula in part (a) then (x, y) satisfies the conditions for being an inner product. [Hint: To show positivity, write out (x, x) in terms of a, b, c, p and q and use the technique of completing the square.]

Solution.

$$
\begin{aligned}
\langle x, y\rangle & =\langle p u+q v, r u+s v\rangle=p r\langle u, u\rangle+q s\langle v, v\rangle+(p s+r q)\langle u, v\rangle \\
& =p r a+q s c+(p s+r q) b=\left(\begin{array}{ll}
p & q
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{r}{s}
\end{aligned}
$$

Recall that the Cauchy-Schwarz inequality states

$$
|\langle x, y\rangle|^{2} \leq\langle x, x\rangle \cdot\langle y, y\rangle
$$

with equality if and only if $x=\lambda y$ for some scalar λ. Using our computation form above we have

$$
(p r a+q s c+(p s+r q) b)^{2} \leq\left(p^{2} a+q^{2} c+(2 p q) b\right) \cdot\left(r^{2} a+s^{2} c+(2 r s) b\right)
$$

Taking $p=s=1$ and $r=q=0$ we see that

$$
b^{2}<a c
$$

For (c) bilinearity and symmetry is clear from the definition of matrix multiplication. It remains to check positivity

$$
\left(\begin{array}{ll}
p & q
\end{array}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{p}{q}=p^{2} a+q^{2} c+(2 p q) b
$$

so positivity would follow if we show that whenever $(p, q) \neq(0,0)$ then

$$
2 p q|b|<p^{2} a+q^{2} c
$$

Recall that

$$
0 \leq(p \sqrt{a}-q \sqrt{c})^{2}=p^{2} a+q^{2} c-2 p q \sqrt{a c}
$$

so

$$
2 p q \sqrt{a c} \leq p^{2} a+q^{2} c
$$

since $b^{2}<a c$ then $|b| \leq \sqrt{a c}$ so

$$
2 p q|b|<2 p q \sqrt{a c} \leq p^{2} a+q^{2} c
$$

Exercise 3.7B:2. The vectors $(1,1,1)$ and $(1,2,1)$ span a plane \mathcal{P} in \mathbb{R}^{3}. Use the Gram-Schmidt process to find an orthogonal basis for \mathbb{R}^{3} in which the first two vectors form an orthogonal basis for \mathcal{P}.

Solution. First we compute a orthogonal basis. Let $u_{1}=(1,1,1) / \sqrt{3}$ and

$$
\begin{aligned}
v_{2} & =(1,2,1)-\left((1,2,1) \bullet u_{1}\right) \cdot u_{1} \\
& =(1,2,1)-\left((1,2,1) \bullet\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& =(1,2,1)-\frac{4}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& =(1,2,1)-\left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)=\left(\frac{-1}{3}, \frac{2}{3}, \frac{-1}{3}\right)
\end{aligned}
$$

then we normalise

$$
u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{3}{2}\left(\frac{-1}{3}, \frac{2}{3}, \frac{-1}{3}\right)=\left(\frac{-1}{2}, 1, \frac{-1}{2}\right)
$$

