
MAT 308 - Homework 4 Solutions Filip Samuelsen

Exercise 3.4:21. Define a function G from C(R) to C(R) by

G(u)(x) =

∫ x

0

tu(t)dt

Show that G is linear. Show that G is one-to-one. Describe the image under G of the subspace
of Pn consisting of all polynomials of degree atmost n. Describe the image under G of all of P.
Describe the inverse of G. Find an element of P that is not in the image of G.

Solution. Let α, β ∈ R and let u, v ∈ C(R) then

G(αu+ βv) =

∫ x

0

t(αu(t) + βv(t))dt = α

∫ x

0

tu(t)dt+ β

∫ x

0

v(t)dt = αG(u) + βG(v)

so G is linear. Suppose G(u) = 0 then ∫ x

0

tu(t)dt = 0

for every x ∈ R hence u(t) ≡ 0. So Ker(G) = 0 so G is injective. Let u =
∑n

k=0 akx
k then

G(u)(x) =

∫ x

0

n∑
k=0

akt
k+1dt =

n∑
k=0

ak
xk+2

k + 2
=

n∑
k=0

ak
k + 2

xk+2

so the image consists of polynomials of the form v =
∑n+2

k=2 akx
k. For all polynomials similar

reasons gives that the image consists of all polynomials
∑N

k=0 akx
k with a0 = a1 = 0.

The problem is stupid because there is no such thing as ”the” inverse since G is not surjective.
But as it is injective there is a left sided inverse. Let f be in the image of G, then f is C1,

f(0) = 0 and by the fundamental theorem of calculus f ′(x) = 0 so let uf (x) =
f ′(x)
x for x ̸= 0

and uf (0) = 0 then

G(u) =

∫ x

0

tuf (t)dt =

∫ x

0

f ′(x)dt = f(x)− f(0) = f(x)

So define a left sided inverse F : C(R) → C(R) by F (f) = uf for f in the image of G and
F (f) = 0 for f not in the image of G.

Finally notice that f(x) = 1 is certainly in P, but

G(u)(0) =

∫ 0

0

tu(t)dt = 0

so f is not in the image.

Exercise 3.5B:4. Show that the given set of vectors forms a basis for R3 of dimension 3 by
showing (a) spanning, and (b) independence.

{(1, 2, 3), (0, 0, 1), (2, 2, 4)}

Solution. It suffices to show that the 3 standard basis vectors of R3 are in the span of {(1, 2, 3), (0, 0, 1), (2, 2, 4)}.
Clearly e3 is in the span, thus

(1, 2, 0) and (2, 2, 0)
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are also in the span so
(1, 0, 0) = (2, 2, 0)− (1, 2, 0)

is in the span, but then

(0, 1, 0) =
1

2
((1, 2, 0)− (1, 0, 0))

which completes the proof. Independence is obvious by dimension counting.

Exercise 3.5B:15. Find the dimension of the subspaces of R2 spanned by the given vectors.

{(−1, 1), (1,−1)}

Solution. Since −1(−1, 1) = (1,−1) then the two vectors are linear dependent and since neither
is zero, then the dimension of the subspace spanned is 1.

Exercise 3.5B:41. Let S be the shift operator defined on the vector space P2 of polynomials
of degree at most 2 by S(p)(x) = p(x + 1). (a) Show that S is a linear operator. Show that
S = I + D + 1

2D
2, where D = d

dx , and I stands for the identity operator. (c) Show that
on Pn the space of polynomials of degree at most n, the shift operator is related to D by
S = 1 +D + 1

2!D
2 + · · ·+ 1

n!D
n.

Solution. (a) Let α, β ∈ R and p, q ∈ P2 then

S(αp+ βq) = αp(x+ 1) + βq(x+ 1) = αS(p) + βS(q)

so p, q are linear. (b) it suffices to check the idenity on a basis so

S(1) = 1 = I(1) +D(1) +
1

2
D2(1)

S(x) = x+ 1 = I(x) +D(x+ 1) +
1

2
D2(x+ 1)

S(x2) = (x+ 1)2 = x2 + 2x+ 1 = I(x2) +D(x2) +
1

2
D2(x+ 1)

More generally by the binomial theorem we have

S(xk) = (x+ 1)k = xk + kxk−1 +
k · (k − 1)

2
xk−1 + · · ·+ k!

k!
xk−k

Exercise 3.5C:3. Show that if f is a one-to-one linear function, then the set {f(x1), ..., f(xk)}
is linearly independent if and only if {x1, ..., xk} is linearly independent. What does this imply
about the dimensions of the image and domain of f?

Solution. Suppose that
α1f(x1) + · · ·+ αkf(xk) = 0

then by linearity
f(α1x1 + · · ·+ αkxk) = 0

since f is injective then ker(f) = {0} so

α1x1 + · · ·+ αkxk = 0
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hence by linearly independence of {x1, ..., xk} we have α1 = · · · = αk = 0.
Conversely suppose that

α1x1 + · · ·+ αkxk = 0

then
f(α1x1 + · · ·+ αkxk) = f(0) = 0

then by linearity
α1f(x1) + · · ·+ αkf(xk) = 0

Since {f(x1), ..., f(xk)} is linearly independent then α1 = · · · = αk = 0.
This implies that if the vector space is finite dimensional and f is injective, then the dimension

of of the image of f equals the dimension of the domain.

Exercise 3.5C:10. Assume V and W are finite dimensional and that f : V → W is linear.
Prove that if N is the kernel of f , then there is a subspace S of V such that S ⋔ N , S∩N = {0},
and f restricted to S is one-to-one.

Solution. Let n be the dimension of V and let {v1, . . . , vk} be a basis for N and extend it with
{vk+1, . . . , vn} to a basis for V . Then

S = span({vk+1, . . . , vn})

Suppose w ∈ S ∩N , then there exists α1, . . . , αk and β1, . . . , βn−k such that

α1v1 + · · ·+ αkvk = w = β1vk+1 + · · ·+ βn−kvn

hence
α1v1 + · · ·+ αkvk − β1vk+1 − · · · − βn−kvn = 0

Since v1, . . . , vk, vk+1, . . . , vn is a basis for V , then they are linearly independent so

α1 = · · · = αk = β1 = · · · = βn−k = 0

hence w = 0⃗ so S ∩N = {0}. Now Ker(f |S) = S ∩Ker(f) = S ∩N = {0} so f |S is injective.

Exercise 3.6A:4. Find all the eigenvalues of each of the linear operators defined by the following
matrices, and for each eigenvalue find an associated eigenvector.

A =

(
0 1
0 2

)
Solution. The eigenvalues are given by

det

(
−λ 1
0 (2− λ)

)
= −λ(2− λ)

so λ1 = 0 and λ2 = 2. Since (
0 1
0 2

)(
1
0

)
=

(
0
0

)
= 0 ·

(
1
0

)
so v0 =

(
1
0

)
Likewise (

0 1
0 2

)(
1
2

)
=

(
2
4

)
= 2 ·

(
1
2

)
so v1 =

(
2
4

)
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Exercise 3.6A:13. Find all the eigenvalues of

G =

(
1 2
1 1

)
show that the associated eigenvectors span R2, and describe the action of G, as in example 2.

Solution. The eigenvalues are given by

det

(
1− λ 2
1 (1− λ)

)
= (1− λ)2 − 2

so λ+ = 1+
√
2 and λ− = 1−

√
2. Since the eigenvalues are real and distinct, then the associated

eigenvectors span R2. The action of G is simply that it expands vectors along v+ by a factor of
1 +

√
2 and contracts vectors along v− by 1−

√
2.

Exercise 3.6A:14. Solve the system of differential equations using eigenvalues and eigenvectors
as in Example 5 in the text.

dx⃗

dt
=

(
1 4
1 1

)
x⃗

Solution. The eigenvalues are given by

det

(
1− λ 4
1 (1− λ)

)
= (1− λ)2 − 4

so λ+ = 1 + 2 = 3 and λ− = 1− 2 = −1. Since(
1 4
1 1

)(
2
1

)
= 3

(
2
1

)

then v+ =

(
2
1

)
and since (

1 4
1 1

)(
−2
1

)
= −1

(
−2
1

)
then v− =

(
−2
1

)
so the general solution is given by

x⃗(t) = c+v+e
3t + c−v−e

−t =

(
2c+e

3t − 2c−e
−t

c+e
3t + c−e

−t

)
for some constants c+ and c−.

Exercise 3.6B:4. Find all the eigenvalues of the linear operators defined by the following matrix
and state whether or not Theorem 6.7 guarantees a basis of eigenvectors. If not determines if a
basis of eigenvectors exists

A =

0 1 0
0 0 1
1 0 0
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Solution.
det(A− λI) = 1− λ3

so the eigenvalues are the 3 cubic roots of 1. Since only 1 of these roots are real then A is not
diagonalizeable over R. Treating A as a complex matrix, then all the eigenvalues are distinct so
A is diagonalizeable over C. (Remark: Being diagonalizeable over R (respectively C is the same
has having a basis for Rn (respectively Cn) consisting of eigenvectors)

Exercise 3.6B:8. Show that the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
has complex associated independent complex eigenvaules. Also find associated independent com-
plex eigenvectors.

Solution.
det(Rθ − λI) = (cos θ − λ)2 + (sin θ)2 = 0

so λ± = cos θ ± i sin θ. Notice that(
cos θ − sin θ
sin θ cos θ

)(
1
±i

)
=

(
cos θ ∓ i sin θ
sin θ ± i cos θ

)
= (cos θ ∓ i sin θ)

(
1
±i

)

so the eigenvectors are given by v± =

(
1
∓i

)
.

Exercise 3.7A:10. Let V be a 2-dimensional vector space with an inner product and a basis
{u, v}, and let (u, u) = a, (u, v) = b, and (v, v) = c. (a) Let x = pu + qv and y = ru + sv be
vectors in V . Use additivity and homogeneity of the inner product to show that

⟨x, y⟩ =
(
p q

)(a b
b c

)(
r
s

)
(b) Show that a > 0 and c > 0 and that the Cauchy-Schwarz inequality implies that b2 < ac (c)
Show that if a, b and c satisfy the conditions of part (b) and (x, y) is defined by the formula in
part (a) then (x, y) satisfies the conditions for being an inner product. [Hint: To show positivity,
write out (x, x) in terms of a, b, c, p and q and use the technique of completing the square.]

Solution.

⟨x, y⟩ = ⟨pu+ qv, ru+ sv⟩ = pr⟨u, u⟩+ qs⟨v, v⟩+ (ps+ rq)⟨u, v⟩

= pra+ qsc+ (ps+ rq)b =
(
p q

)(a b
b c

)(
r
s

)
Recall that the Cauchy-Schwarz inequality states

|⟨x, y⟩|2 ≤ ⟨x, x⟩ · ⟨y, y⟩

with equality if and only if x = λy for some scalar λ. Using our computation form above we have

(pra+ qsc+ (ps+ rq)b)2 ≤ (p2a+ q2c+ (2pq)b) · (r2a+ s2c+ (2rs)b)

Taking p = s = 1 and r = q = 0 we see that

b2 < ac
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For (c) bilinearity and symmetry is clear from the definition of matrix multiplication. It remains
to check positivity (

p q
)(a b

b c

)(
p
q

)
= p2a+ q2c+ (2pq)b

so positivity would follow if we show that whenever (p, q) ̸= (0, 0) then

2pq|b| < p2a+ q2c

Recall that
0 ≤ (p

√
a− q

√
c)2 = p2a+ q2c− 2pq

√
ac

so
2pq

√
ac ≤ p2a+ q2c

since b2 < ac then |b| ≤
√
ac so

2pq|b| < 2pq
√
ac ≤ p2a+ q2c

Exercise 3.7B:2. The vectors (1, 1, 1) and (1, 2, 1) span a plane P in R3. Use the Gram-Schmidt
process to find an orthogonal basis for R3 in which the first two vectors form an orthogonal basis
for P.

Solution. First we compute a orthogonal basis. Let u1 = (1, 1, 1)/
√
3 and

v2 = (1, 2, 1)− ((1, 2, 1) • u1) · u1

= (1, 2, 1)−
(
(1, 2, 1) • ( 1√

3
,
1√
3
,
1√
3
)

)
· ( 1√

3
,
1√
3
,
1√
3
)

= (1, 2, 1)− 4√
3
(
1√
3
,
1√
3
,
1√
3
)

= (1, 2, 1)− (
4

3
,
4

3
,
4

3
) = (

−1

3
,
2

3
,
−1

3
)

then we normalise

u2 =
v2

||v2||
=

3

2
(
−1

3
,
2

3
,
−1

3
) = (

−1

2
, 1,

−1

2
)

Page 6


