Exercise 3.2:12. Let \vec{a} be a fixed nonzero vector in \mathbb{R}^{n}. (a) Show that the set S of all vectors x such that $a \bullet x=0$ is a subspace of \mathbb{R}^{n}. (b) Show that if k is a nonzero real number, then the set A of all vectors x such that $a \bullet x=k$ is not a subspace.

Solution. (a) Let $\alpha, \beta \in \mathbb{R}$ and $x_{1}, x_{2} \in S$. Then

$$
a \bullet\left(\alpha x_{1}+\beta x_{2}\right)=\alpha \cdot\left(a \bullet x_{1}\right)+\beta \cdot\left(a \bullet x_{2}\right)=\alpha \cdot 0+\beta \cdot 0=0
$$

so $\left(\alpha x_{1}+\beta x_{2}\right) \in S$ hence S is a subspace.
(b) Since $a \bullet 0=0 \neq k$ then $0 \notin A$ so A is not a subspace.

Exercise 3.2:16. In Exercises 16 to 18, determine whether the set of all polynomials p in \mathcal{P}_{3} that satisfy the given conditions is a subspace of \mathcal{P}_{3}.

$$
p(0)=1
$$

Solution. No. If $p_{0} \equiv 0$ is the zero polynomial then $p(0) \neq 1$.

Exercise 3.2:17.

$$
p(1)=0
$$

Solution. Yes. Let $\alpha, \beta \in \mathbb{R}$ and $p, q \in \mathcal{P}_{3}$ such that $p(1)=q(1)=0$. Then

$$
\alpha \cdot p(1)+\beta q(1)=\alpha \cdot 0+\beta \cdot 0=0
$$

Exercise 3.2:18.

$$
p(0)=p(1)
$$

Solution. Yes. Let $\alpha, \beta \in \mathbb{R}$ and $p, q \in \mathcal{P}_{3}$ such that $p(0)=p(1)$ and $q(0)=q(1)$. Then

$$
(\alpha \cdot p+\beta \cdot q)(1)=\alpha \cdot p(1)+\beta q(1)=\alpha \cdot p(0)+\beta q(0)=(\alpha \cdot p+\beta \cdot q)(0)
$$

Exercise 3.2:20. In the space \mathcal{P} of polynomials, let A be the set of all p such that $p(x)=$ $-p(-x)$, and let B be the set of p such that $p(x)=p(-x)$. Show that A is the span of $\left\{x, x^{3}, x^{5}, \ldots\right\}$, and find a spanning set for B.

Recall that two polynomials are equal (have the same value at every $x \in \mathbb{R}$) if and only if they are identical (exact same coefficients in each and every power of x). This follows from the fact that a non-zero polynomial has at most finitely many roots, so if p, q are equal polynomials then $p-q$ has infinitely many roots and thus must be the zero polynomial.

Solution. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ be a polynomial in A then $p(x)=-p(-x)$ so

$$
\sum_{k=0}^{n} a_{k} x^{k}=-\sum_{k=0}^{n} a_{k}(-x)^{k}=\sum_{k=0}^{n}(-1)^{k+1} a_{k} x^{k}
$$

Since the two polynomials are equal then $a_{k}=(-1)^{k+1} a_{k}$ thus $a_{k}=0$ for k even. Therefore $p(x)$ is in the span of $\left\{x, x^{3}, x^{5}, \ldots\right\}$ hence $A \subseteq \operatorname{span}\left(\left\{x, x^{3}, x^{5}, \ldots\right\}\right)$. On the other hand for any finite linear combination $p(x)=\sum_{k=0}^{n} a_{k} x^{2 k+1}$ we have

$$
p(x)=\sum_{k=0}^{n} a_{k} x^{2 k+1}=-\sum_{k=0}^{n} a_{k}(-x)^{2 k+1}=-p(-x)
$$

so $\operatorname{span}\left(\left\{x, x^{3}, x^{5}, \ldots\right\}\right) \subseteq A$ hence $A=\operatorname{span}\left(\left\{x, x^{3}, x^{5}, \ldots\right\}\right)$.
Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ be a polynomial in B then $p(x)=p(-x)$ so

$$
\sum_{k=0}^{n} a_{k} x^{k}=\sum_{k=0}^{n} a_{k}(-x)^{k}=\sum_{k=0}^{n}(-1)^{k} a_{k} x^{k}
$$

Since the two polynomials are equal then $a_{k}=(-1)^{k} a_{k}$ thus $a_{k}=0$ for k odd. Therefore $p(x)$ is in the span of $\left\{1, x^{2}, x^{4}, \ldots\right\}$ hence $B \subseteq \operatorname{span}\left(\left\{1, x^{2}, x^{4}, \ldots\right\}\right)$. On the other hand for any finite linear combination $p(x)=\sum_{k=0}^{n} a_{2 k} x^{2 k}$ we have

$$
p(x)=\sum_{k=0}^{n} a_{2 k} x^{2 k}=\sum_{k=0}^{n} a_{k}(-x)^{2 k+1}=p(-x)
$$

so $\operatorname{span}\left(\left\{1, x^{2}, x^{4}, \ldots\right\}\right) \subseteq B$ hence $B=\operatorname{span}\left(\left\{1, x^{2}, x^{4}, \ldots\right\}\right)$.
Exercise 3.2:24. Determine whether the given subset of $C^{1}(\mathbb{R})$ consisting of all even functions (functions f such that $f(x)=f(-x)$ for every value of x) is also a subspace.

Solution. Let f and g be even functions, then

$$
(\alpha f+\beta g)(x)=\alpha f(x)+\beta g(x)=\alpha f(-x)+\beta g(-x)=(\alpha f+\beta g)(-x)
$$

so the subset of even function is a subspace.
Exercise 3.2:25. Let $C[a, b]$ be the vector space of continuous real-valuedfunctions defined on the interval $[a, b]$. Let $C_{0}[a, b]$ be the set of functions $f \in C[a, b]$ such that $f(a)=f(b)=0$. Show that $C_{0}[a, b]$ is a subspace of $C[a, b]$.

Solution. Let $f, g \in C_{0}[a, b]$ then
$(\alpha \cdot f+\beta \cdot g)(a)=\alpha \cdot f(a)+\beta \cdot g(a)=\alpha \cdot 0+\beta \cdot 0=0=\alpha \cdot f(b)+\beta \cdot g(b)=(\alpha \cdot f+\beta \cdot g)(b)$
so $C_{0}[a, b]$ is a subspace of $C[a, b]$.
Exercise 3.2:26. Show that S and T have the same span in \mathbb{R}^{3} by showing that the vectors in S are in the span of T and vice versa.

$$
S=\{(1,0,0),(0,1,0)\} \quad T=\{(1,2,0),(2,1,0)\}
$$

Solution. Since $\operatorname{span}(S)$ and $\operatorname{span}(T)$ are vector subspaces, they are closed under linear combinations and scalar multiplications. Therefore if $S \subseteq \operatorname{span}(T)$ then $\operatorname{span}(S) \subseteq \operatorname{span}(T)$. Likewise if $T \subseteq \operatorname{span}(S)$ then $\operatorname{span}(T) \subseteq \operatorname{span}(S)$. Hence it suffices to show that $S \subseteq \operatorname{span}(T)$ and $T \subseteq \operatorname{span}(S)$. Since

$$
\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+2 \cdot\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=2 \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

then $T \subseteq \operatorname{span}(S)$. Likewise

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\frac{2}{3} \cdot\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)-\frac{1}{3} \cdot\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\frac{2}{3} \cdot\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\frac{1}{3} \cdot\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

so $S \subseteq \operatorname{span}(T)$.

Exercise 3.3:6. Each of Exercises 6 to 8 defines a function from \mathbb{R}^{∞} to \mathbb{R}^{∞}, where \mathbb{R}^{∞} is the vector space of sequences $\left(x_{k}\right), k=1,2,3, \ldots$ of Example 3 in Section 2. In each case, show that the function is linear and state whether the function is one-to-one (injective) or not. If it is one-to-one then describe its inverse and the domain of the inverse.

$$
g\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right)
$$

Solution. The function is bijective. The inverse is given by

$$
g^{-1}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \ldots\right)
$$

Exercise 3.3:7.

$$
h\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Solution. The function is not injective since

$$
f(1,1,1,1,1, \ldots)=f(0,1,1,1,1, \ldots)
$$

Exercise 3.3:8.

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)
$$

Solution. The function is injective. It maps onto the subspace

$$
V=\left\{\left(x_{k}\right) \mid x_{1}=0\right\}
$$

and an inverse is give by $p^{-1}: V \rightarrow \mathbb{R}^{\infty}$

$$
p^{-1}\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Exercise 3.3:11. In Exercises 11 and 12, determine the effect on a sequence $(x 1, x 2, x 3, \ldots)$ of the given combinations of the functions defined in Exercises 6 to 8 .

$$
g \circ p \quad \text { and } \quad p \circ g
$$

Solution.

$$
\begin{gathered}
g \circ p\left(x_{1}, x_{2}, x_{3}, \ldots\right)=g\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,2 x_{1}, 3 x_{2}, 4 x_{3}, \ldots\right) \\
p \circ g\left(x_{1}, x_{2}, x_{3}, \ldots\right)=p\left(x_{1}, 2 x_{2}, 3 x_{3}, 4 x_{4}, \ldots\right)=\left(0,2 x_{2}, 3 x_{3}, 4 x_{4}, \ldots\right)
\end{gathered}
$$

Exercise 3.3:12.

$$
h \circ p \quad \text { and } \quad p \circ h
$$

Solution.

$$
\begin{gathered}
h \circ p\left(x_{1}, x_{2}, x_{3}, \ldots\right)=h\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right) \\
p \circ h\left(x_{1}, x_{2}, x_{3}, \ldots\right)=p\left(x_{2}, x_{3}, x_{4}, \ldots\right)=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)
\end{gathered}
$$

Exercise 3.3:17. Let $D=d / d x$ act as a transformation from $C^{1}(\mathbb{R})$ to $C(\mathbb{R})$. (a) If $u(x)=2 x^{3}$, find $(D x-x D)(u(x))$, where the operator $D x$ first multiplies by x and then applies D. (b) Show that $D x-x D=I$, where I is the identity operator defined by $I(u)=u$ for all u. (c) Is $D^{2}-x^{2}$ equal to $(D+x)(D-x)$? To find out, apply both operators to a general function $u(x)$ in $C^{2}(\mathbb{R})$ and see if you get the same result.

Solution. (a) Let $u(x)=2 x^{3}$ then

$$
(D x-x D)(u(x))=D\left(2 x^{4}\right)-x \cdot D\left(2 x^{3}\right)=8 x^{3}-6 x^{3}=2 x^{3}
$$

(b) Let $f \in C^{1}(\mathbb{R})$. By the product rule

$$
D(f \cdot x)=\frac{d(f(x) \cdot x}{d x}=\frac{d f(x)}{d x} \cdot x+f(x)=D(f) \cdot x+f
$$

therefore

$$
(D x-x D)(f)=D(f \cdot x)-x \cdot D(f)=D(f) \cdot x+f-x \cdot D(f)=f=I(f)
$$

(c) A computation utilizing part (b) gives

$$
\begin{aligned}
(D+x) \circ(D-x)(f)=(D+x)(D(f)-f \cdot x) & =D(D(f)-f \cdot x)+x \cdot(D(f)-f \cdot x) \\
& =D^{2}(f)-D(f \cdot x)+x \cdot D(f)-f \cdot x^{2} \\
& =\left(D^{2}-x^{2}\right)(f)-(D(f \cdot x)-x \cdot D(f)) \\
& =\left(D^{2}-x^{2}\right)(f)-(D x-x D)(f) \\
& =\left(D^{2}-x^{2}\right)(f)-I(f)
\end{aligned}
$$

Therefore

$$
(D+x) \circ(D-x)(f) \neq\left(D^{2}-x^{2}\right)(f)
$$

Exercise 3.3:20. Show that the given function $S: C([0,1]) \rightarrow C[0,1]$ given by $S(u(x))=$ $\int_{0}^{x} e^{-t} u(t) d t$ is linear.

Solution. Let $\alpha, \beta \in \mathbb{R}$ and $f, g \in C([0,1])$ then

$$
\begin{aligned}
S(\alpha \cdot f+\beta \cdot g)(t) & =\int_{0}^{x} e^{-t}(\alpha \cdot f(t)+\beta \cdot g(t)) d t \\
& =\int_{0}^{x} e^{-t} \alpha f(t)+e^{-t} \beta g(t) d t \\
& =\alpha \int_{0}^{x} e^{-t} f(t) d t+\beta \int_{0}^{x} e^{-t} g(t) d t \\
& =\alpha S(f)+\beta S(g)
\end{aligned}
$$

Exercise 3.3:22. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be such that $L(1,2)=(2,3)$ and $L(-1,1)=(1,-1)$. Find a vector \vec{u} in \mathbb{R}^{2} such that $L \vec{u}=(3,7)$.

Solution. Since

$$
2\binom{2}{3}-\binom{1}{-1}=\binom{3}{7}
$$

then by linearity

$$
\binom{3}{7}=L\left(2\binom{1}{2}-\binom{-1}{1}\right)=L\left(\binom{3}{3}\right)
$$

so $\vec{u}=(3,3)$.
Exercise 3.3:24. Let $L: C([0,1]) \rightarrow C([0,1])$ be such that $L(1)=1, L(x)=x$ and $L\left(x^{2}\right)=$ $x^{2}+2$. What is $L\left(2 x^{2}+x-1\right)$?

Solution.

$$
L\left(2 x^{2}+x-1\right)=2 \cdot L\left(x^{2}\right)+L(x)-L(1)=2\left(x^{2}+2\right)+x-1=2 x^{2}+x+3
$$

Exercise 3.4:8. In each of Exercises 8 to 10, describe carefully the image of the given transformation F, state whether the function is linear, and if it is linear, describe its kernel (null-space).

$$
F: C(\mathbb{R}) \rightarrow C(\mathbb{R}) \quad \text { where } F(u)(x)=e^{u(X)}
$$

Solution.

$$
\operatorname{Im}(F)=\{f \in C(\mathbb{R}) \mid f(x)>0\}
$$

The function is not linear; Indeed $F(1+1)=e^{2} \neq 2 e$.

Exercise 3.4:9.

$$
F: C(\mathbb{R}) \rightarrow C^{1}(\mathbb{R}) \quad \text { where } F(u)(x)=\int_{0}^{x} e^{-t} u(t) d t
$$

Solution. I claim that

$$
\operatorname{Im}(F)=\left\{f \in C^{1}(\mathbb{R}) \mid f(0)=0\right\}
$$

Indeed since

$$
F(u)(0)=\int_{0}^{0} e^{-t} u(t) d t=0
$$

then the condition $f(0)=0$ is necessary for f to be in $\operatorname{Im}(F)$. On the other hand given a $f \in C^{1}(\mathbb{R})$ let $u(x)=f^{\prime}(x) \cdot e^{x}$ then by the fundamental theorem of calculus

$$
F(u)=\int_{0}^{x} f^{\prime}(t) d t=f(x)-f(0)=f(x)
$$

so $f(0)=0$ is also sufficent.
Let $\alpha, \beta \in \mathbb{R}$ and $f, g \in C(\mathbb{R})$ then

$$
\begin{aligned}
F(\alpha \cdot f+\beta \cdot g)(t) & =\int_{0}^{x} e^{-t}(\alpha \cdot f(t)+\beta \cdot g(t)) d t \\
& =\int_{0}^{x} e^{-t} \alpha f(t)+e^{-t} \beta g(t) d t \\
& =\alpha \int_{0}^{x} e^{-t} f(t) d t+\beta \int_{0}^{x} e^{-t} g(t) d t \\
& =\alpha F(f)+\beta F(g)
\end{aligned}
$$

so F is linear. Since $e^{-t} f(t)=0$ iff $f(t)=0$ then

$$
\operatorname{Ker}(F)=\{f(x) \equiv 0\}
$$

Exercise 3.4:10.

$$
F: C^{(1)}(\mathbb{R}) \rightarrow C(\mathbb{R}) \quad \text { where } F(u)(x)=u^{\prime}(x)+u(x)
$$

Solution.

$$
\operatorname{Im}(F)=\left\{f \mid \exists u: u^{\prime}(x)+u(x)\right\}
$$

Let $\alpha, \beta \in \mathbb{R}$ and $f, g \in C^{1}(\mathbb{R})$ then

$$
\begin{aligned}
F(\alpha \cdot f+\beta \cdot g)(t) & =\alpha f^{\prime}(x)+\alpha f(x)+\beta g^{\prime}(x)+\beta g(x) \\
& =\alpha\left(f^{\prime}(x)+f(x)\right)+\beta\left(g^{\prime}(x)+g(x)\right) \\
& =\alpha F(f)+\beta F(g)
\end{aligned}
$$

so F is linear. If $f \in \operatorname{Ker}(F)$ then $f^{\prime}(x)=-f(x)$ hence it is a solution to the differential equation $\frac{d y}{d x}=-y$. By separation of variables

$$
\log (y)+c_{1}=\int \frac{1}{y}=-\int x d x=-x+c_{2}
$$

The general solution is thus given by $y(x)=K e^{-x}$ hence

$$
\operatorname{Ker}(F)=\left\{f(x)=K e^{-x} \mid K \in \mathbb{R}\right\}
$$

Exercise 3.4:11. In Exercises 11 and 12, describe the image and the null-space of the function defined by $f(\vec{x})=A \vec{x}$ for the given matrix A.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Solution. Since $(1,0)$ and $(1,1)$ are linearly independent then

$$
\begin{aligned}
\operatorname{Im}(A) & =\mathbb{R}^{2} \\
\operatorname{Ker}(A) & =\{\overrightarrow{0}\}
\end{aligned}
$$

Exercise 3.4:12.

$$
A=\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)
$$

Solution. Notice how

$$
\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)\binom{3}{-1}=\binom{0}{0}=\overrightarrow{0}
$$

and

$$
\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)\binom{1}{0}=\binom{2}{1}
$$

so $\operatorname{Ker}(A)=\operatorname{span}(\{(3,-1)\})$ and $\operatorname{Im}(A)=\operatorname{span}(\{(2,1)\})$

