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Exercise 3.2:12. Let a⃗ be a fixed nonzero vector in Rn. (a) Show that the set S of all vectors
x such that a • x = 0 is a subspace of Rn. (b) Show that if k is a nonzero real number, then the
set A of all vectors x such that a • x = k is not a subspace.

Solution. (a) Let α, β ∈ R and x1, x2 ∈ S. Then

a • (αx1 + βx2) = α · (a • x1) + β · (a • x2) = α · 0 + β · 0 = 0

so (αx1 + βx2) ∈ S hence S is a subspace.
(b) Since a • 0 = 0 ̸= k then 0 ̸∈ A so A is not a subspace.

Exercise 3.2:16. In Exercises 16 to 18, determine whether the set of all polynomials p in P3

that satisfy the given conditions is a subspace of P3.

p(0) = 1

Solution. No. If p0 ≡ 0 is the zero polynomial then p(0) ̸= 1.

Exercise 3.2:17.
p(1) = 0

Solution. Yes. Let α, β ∈ R and p, q ∈ P3 such that p(1) = q(1) = 0. Then

α · p(1) + βq(1) = α · 0 + β · 0 = 0

Exercise 3.2:18.
p(0) = p(1)

Solution. Yes. Let α, β ∈ R and p, q ∈ P3 such that p(0) = p(1) and q(0) = q(1). Then

(α · p+ β · q)(1) = α · p(1) + βq(1) = α · p(0) + βq(0) = (α · p+ β · q)(0)

Exercise 3.2:20. In the space P of polynomials, let A be the set of all p such that p(x) =
−p(−x), and let B be the set of p such that p(x) = p(−x). Show that A is the span of
{x, x3, x5, ...}, and find a spanning set for B.

Recall that two polynomials are equal (have the same value at every x ∈ R) if and only if
they are identical (exact same coefficients in each and every power of x). This follows from the
fact that a non-zero polynomial has at most finitely many roots, so if p, q are equal polynomials
then p− q has infinitely many roots and thus must be the zero polynomial.

Solution. Let p(x) =
∑n

k=0 akx
k be a polynomial in A then p(x) = −p(−x) so

n∑
k=0

akx
k = −

n∑
k=0

ak(−x)k =

n∑
k=0

(−1)k+1akx
k

Since the two polynomials are equal then ak = (−1)k+1ak thus ak = 0 for k even. Therefore
p(x) is in the span of {x, x3, x5, ...} hence A ⊆ span({x, x3, x5, ...}). On the other hand for any
finite linear combination p(x) =

∑n
k=0 akx

2k+1 we have

p(x) =

n∑
k=0

akx
2k+1 = −

n∑
k=0

ak(−x)2k+1 = −p(−x)
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so span({x, x3, x5, ...}) ⊆ A hence A = span({x, x3, x5, ...}).
Let p(x) =

∑n
k=0 akx

k be a polynomial in B then p(x) = p(−x) so

n∑
k=0

akx
k =

n∑
k=0

ak(−x)k =

n∑
k=0

(−1)kakx
k

Since the two polynomials are equal then ak = (−1)kak thus ak = 0 for k odd. Therefore p(x)
is in the span of {1, x2, x4, ...} hence B ⊆ span({1, x2, x4, ...}). On the other hand for any finite
linear combination p(x) =

∑n
k=0 a2kx

2k we have

p(x) =

n∑
k=0

a2kx
2k =

n∑
k=0

ak(−x)2k+1 = p(−x)

so span({1, x2, x4, ...}) ⊆ B hence B = span({1, x2, x4, ...}).

Exercise 3.2:24. Determine whether the given subset of C1(R) consisting of all even functions
(functions f such that f(x) = f(−x) for every value of x) is also a subspace.

Solution. Let f and g be even functions, then

(αf + βg)(x) = αf(x) + βg(x) = αf(−x) + βg(−x) = (αf + βg)(−x)

so the subset of even function is a subspace.

Exercise 3.2:25. Let C[a, b] be the vector space of continuous real-valuedfunctions defined on
the interval [a, b]. Let C0[a, b] be the set of functions f ∈ C[a, b] such that f(a) = f(b) = 0.
Show that C0[a, b] is a subspace of C[a, b].

Solution. Let f, g ∈ C0[a, b] then

(α · f + β · g)(a) = α · f(a) + β · g(a) = α · 0 + β · 0 = 0 = α · f(b) + β · g(b) = (α · f + β · g)(b)

so C0[a, b] is a subspace of C[a, b].

Exercise 3.2:26. Show that S and T have the same span in R3 by showing that the vectors in
S are in the span of T and vice versa.

S = {(1, 0, 0), (0, 1, 0)} T = {(1, 2, 0), (2, 1, 0)}

Solution. Since span(S) and span(T ) are vector subspaces, they are closed under linear combi-
nations and scalar multiplications. Therefore if S ⊆ span(T ) then span(S) ⊆ span(T ). Likewise
if T ⊆ span(S) then span(T ) ⊆ span(S). Hence it suffices to show that S ⊆ span(T ) and
T ⊆ span(S). Since1

2
0

 =

1
0
0

+ 2 ·

0
1
0

 and

2
1
0

 = 2 ·

1
0
0

+

0
1
0


then T ⊆ span(S). Likewise1

0
0

 =
2

3
·

2
1
0

− 1

3
·

1
2
0

 and

0
1
0

 =
2

3
·

1
2
0

− 1

3
·

2
1
0


so S ⊆ span(T ).

Page 2



MAT308 - Homework 3 Solutions Filip Samuelsen

Exercise 3.3:6. Each of Exercises 6 to 8 defines a function from R∞ to R∞, where R∞ is the
vector space of sequences (xk), k = 1, 2, 3, . . . of Example 3 in Section 2. In each case, show
that the function is linear and state whether the function is one-to-one (injective) or not. If it is
one-to-one then describe its inverse and the domain of the inverse.

g(x1, x2, x3, . . .) = (x1, 2x2, 3x3, . . .)

Solution. The function is bijective. The inverse is given by

g−1(x1, x2, x3, . . .) = (x1,
1

2
x2,

1

3
x3, . . .)

Exercise 3.3:7.
h(x1, x2, x3, . . .) = (x2, x3, x4, . . .)

Solution. The function is not injective since

f(1, 1, 1, 1, 1, . . .) = f(0, 1, 1, 1, 1, . . .)

Exercise 3.3:8.
p(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .)

Solution. The function is injective. It maps onto the subspace

V = {(xk)|x1 = 0}

and an inverse is give by p−1 : V → R∞

p−1(0, x2, x3, x4, . . .) = (x2, x3, x4, . . .)

Exercise 3.3:11. In Exercises 11 and 12, determine the effect on a sequence (x1, x2, x3, ...) of
the given combinations of the functions defined in Exercises 6 to 8.

g ◦ p and p ◦ g

Solution.
g ◦ p(x1, x2, x3, . . .) = g(0, x1, x2, x3, . . .) = (0, 2x1, 3x2, 4x3, . . .)

p ◦ g(x1, x2, x3, . . .) = p(x1, 2x2, 3x3, 4x4, . . .) = (0, 2x2, 3x3, 4x4, . . .)

Exercise 3.3:12.
h ◦ p and p ◦ h

Solution.
h ◦ p(x1, x2, x3, . . .) = h(0, x1, x2, x3, . . .) = (x1, x2, x3, x4, . . .)

p ◦ h(x1, x2, x3, . . .) = p(x2, x3, x4, . . .) = (0, x2, x3, x4, . . .)
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Exercise 3.3:17. Let D = d/dx act as a transformation from C1(R) to C(R). (a) If u(x) = 2x3,
find (Dx−xD)(u(x)), where the operator Dx first multiplies by x and then applies D. (b) Show
that Dx− xD = I, where I is the identity operator defined by I(u) = u for all u. (c) Is D2 − x2

equal to (D+ x)(D− x)? To find out, apply both operators to a general function u(x) in C2(R)
and see if you get the same result.

Solution. (a) Let u(x) = 2x3 then

(Dx− xD)(u(x)) = D(2x4)− x ·D(2x3) = 8x3 − 6x3 = 2x3

(b) Let f ∈ C1(R). By the product rule

D(f · x) = d(f(x) · x
dx

=
df(x)

dx
· x+ f(x) = D(f) · x+ f

therefore

(Dx− xD)(f) = D(f · x)− x ·D(f) = D(f) · x+ f − x ·D(f) = f = I(f)

(c) A computation utilizing part (b) gives

(D + x) ◦ (D − x)(f) = (D + x)(D(f)− f · x) = D(D(f)− f · x) + x · (D(f)− f · x)
= D2(f)−D(f · x) + x ·D(f)− f · x2

= (D2 − x2)(f)− (D(f · x)− x ·D(f))

= (D2 − x2)(f)− (Dx− xD)(f)

= (D2 − x2)(f)− I(f)

Therefore
(D + x) ◦ (D − x)(f) ̸= (D2 − x2)(f)

Exercise 3.3:20. Show that the given function S : C([0, 1]) → C[0, 1] given by S(u(x)) =∫ x

0
e−tu(t)dt is linear.

Solution. Let α, β ∈ R and f, g ∈ C([0, 1]) then

S(α · f + β · g)(t) =
∫ x

0

e−t(α · f(t) + β · g(t))dt

=

∫ x

0

e−tαf(t) + e−tβg(t)dt

= α

∫ x

0

e−tf(t)dt+ β

∫ x

0

e−tg(t)dt

= αS(f) + βS(g)

Exercise 3.3:22. Let L : R2 → R2 be such that L(1, 2) = (2, 3) and L(−1, 1) = (1,−1). Find a
vector u⃗ in R2 such that Lu⃗ = (3, 7).
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Solution. Since

2

(
2
3

)
−

(
1
−1

)
=

(
3
7

)
then by linearity (

3
7

)
= L

(
2

(
1
2

)
−

(
−1
1

))
= L

((
3
3

))
so u⃗ = (3, 3).

Exercise 3.3:24. Let L : C([0, 1]) → C([0, 1]) be such that L(1) = 1, L(x) = x and L(x2) =
x2 + 2. What is L(2x2 + x− 1)?

Solution.

L(2x2 + x− 1) = 2 · L(x2) + L(x)− L(1) = 2(x2 + 2) + x− 1 = 2x2 + x+ 3

Exercise 3.4:8. In each of Exercises 8 to 10, describe carefully the image of the given transfor-
mation F , state whether the function is linear, and if it is linear, describe its kernel (null-space).

F : C(R) → C(R) where F (u)(x) = eu(X)

Solution.
Im(F ) = {f ∈ C(R)|f(x) > 0}

The function is not linear; Indeed F (1 + 1) = e2 ̸= 2e.

Exercise 3.4:9.

F : C(R) → C1(R) where F (u)(x) =

∫ x

0

e−tu(t)dt

Solution. I claim that
Im(F ) = {f ∈ C1(R)|f(0) = 0}

Indeed since

F (u)(0) =

∫ 0

0

e−tu(t)dt = 0

then the condition f(0) = 0 is necessary for f to be in Im(F ). On the other hand given a
f ∈ C1(R) let u(x) = f ′(x) · ex then by the fundamental theorem of calculus

F (u) =

∫ x

0

f ′(t)dt = f(x)− f(0) = f(x)

so f(0) = 0 is also sufficent.
Let α, β ∈ R and f, g ∈ C(R) then

F (α · f + β · g)(t) =
∫ x

0

e−t(α · f(t) + β · g(t))dt

=

∫ x

0

e−tαf(t) + e−tβg(t)dt

= α

∫ x

0

e−tf(t)dt+ β

∫ x

0

e−tg(t)dt

= αF (f) + βF (g)
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so F is linear. Since e−tf(t) = 0 iff f(t) = 0 then

Ker(F ) = {f(x) ≡ 0}

Exercise 3.4:10.

F : C(1)(R) → C(R) where F (u)(x) = u′(x) + u(x)

Solution.
Im(F ) = {f |∃u : u′(x) + u(x)}

Let α, β ∈ R and f, g ∈ C1(R) then

F (α · f + β · g)(t) = αf ′(x) + αf(x) + βg′(x) + βg(x)

= α(f ′(x) + f(x)) + β(g′(x) + g(x))

= αF (f) + βF (g)

so F is linear. If f ∈ Ker(F ) then f ′(x) = −f(x) hence it is a solution to the differential equation
dy
dx = −y. By separation of variables

log(y) + c1 =

∫
1

y
= −

∫
xdx = −x+ c2

The general solution is thus given by y(x) = Ke−x hence

Ker(F ) = {f(x) = Ke−x|K ∈ R}

Exercise 3.4:11. In Exercises 11 and 12, describe the image and the null-space of the function
defined by f(x⃗) = Ax⃗ for the given matrix A.

A =

(
1 1
0 1

)
Solution. Since (1, 0) and (1, 1) are linearly independent then

Im(A) = R2

Ker(A) = {⃗0}

Exercise 3.4:12.

A =

(
2 6
1 3

)
Solution. Notice how (

2 6
1 3

)(
3
−1

)
=

(
0
0

)
= 0⃗

and (
2 6
1 3

)(
1
0

)
=

(
2
1

)
so Ker(A) = span({(3,−1)}) and Im(A) = span({(2, 1)})

Page 6


