Exercise 1. Find $\exp (t A)$ by computing the succesddive terms, $I, t A, t^{2} A / 2, \ldots$ in the series definition where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

solution. Clearly $A^{2}=I$ so $A^{2 n}=I$ and $A^{2 n+1}=A$. Therefore

$$
\exp (t A)=\sum_{n=0}^{\infty} \frac{t^{2 n} I}{2 n!}+\sum_{n=0}^{\infty} \frac{t^{2 n+1} A}{(2 n+1)!}=\left(\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{t^{2 n}}{2 n!} & \sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!} \\
\sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!} & \sum_{n=0}^{\infty} \frac{t^{2 n}}{2 n!}
\end{array}\right)=\left(\begin{array}{cc}
\cosh (t) & \sinh (t) \\
\sinh (t) & \cosh (t)
\end{array}\right)
$$

Exercise 2. Find, using the nilpotent-diagonal decomposition, the exponential of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 3 & 1 \\
-1 & 0 & 4
\end{array}\right)
$$

Solution. By inspection e_{2} and $e_{1}+e_{3}$ are both eigenvectors for the eigenvalue 3 . Since $\operatorname{Tr}(A)=9$ the last eigenvalue is also 3 . Take $N=A-3 I$. Then $N^{2}=0$ so

$$
\exp (A)=\exp (3 I+N)=\exp (3 I) \exp (N)=\exp (3 I)(I+N)=\exp (3) I+\exp (3) N
$$

Each term is now easy to compute

$$
\exp (A)=\left(\begin{array}{ccc}
e^{3} & 0 & 0 \\
0 & e^{3} & 0 \\
0 & 0 & e^{3}
\end{array}\right)+\left(\begin{array}{ccc}
-e^{3} & 0 & e^{3} \\
-e^{3} & 0 & e^{3} \\
-e^{3} & 0 & e^{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & e^{3} \\
-e^{3} & e^{3} & e^{3} \\
-e^{3} & 0 & 2 e^{3}
\end{array}\right)
$$

Exercise 4. Let (X, d) be any metric space. Show that

$$
\tilde{d}=\frac{d(a, b)}{1+d(a, b)}
$$

defines a metric on X. Give a bound on the maximum distance between any elements of X with respect to the metric \tilde{d}.

Solution. Positivity and symmetry is immediate. It remains to show the triangle inequality. Consider $f:[0, \infty) \rightarrow[0, \infty)$ defined by $f(x)=\frac{x}{1+x}$. Then $f^{\prime}(x)=\frac{1}{(1+x)^{2}}>0$ so f in increasing and $f^{\prime \prime}(x)=\frac{-2}{(1+x)^{3}}<0$ so f is concave. Therefore if $x \leq y+z$ then

$$
f(x) \leq f(x+y) \leq f(y)+f(z)
$$

Applying this with $x=d(a, b), y=d(a, c)$ and $z=d(c, b)$ deduces the triangle inequality for \tilde{d} from the triangle inequality for d.

Exercise 5. Consider the metric space $\left(\mathbb{R}^{n}, d\right)$ where $d(x, y)=\|x-y\|$ Show that this in fact is a metric space.

Solution. Positivity and symmetry is immediate. It remains to show the triangle inequality. It suffices to show that

$$
\|u+v\| \leq\|u\|+\|v\|
$$

since then

$$
d(x, z)=\|x-z\|=\|x-y+y-z\| \leq\|x-y\|+\|y-z\|=d(x, y)+d(y, z)
$$

Consider

$$
\|u+v\|^{2}=\langle u, v\rangle=\langle u, u\rangle+\langle v, v\rangle+2\langle u, v\rangle \leq\|u\|^{2}+\|v\|^{2}+2\|u\|\|v\|=(\|u\|+\|v\|)^{2}
$$

Applying the square root function, which is an order preserving function, gives the desired result.

Exercise 6. Consider the metric space (\mathbb{R}, d) given by $d(x, y)=\left|e^{-x}-e^{-y}\right|$. Given an example of a Cauchy sequence that does not converge and a heuristic justification.

Solution. $x \mapsto-\log (x)$ is an isometry from $\left((0, \infty), d_{s t d}\right)$ to $((-\infty, \infty), d)$. So take any sequence, say $\frac{1}{n}$ on $\left((0, \infty), d_{s t d}\right)$ converging to 0 in $\left(\mathbb{R}, d_{s t d}\right)$. Since the sequence converges in $\left(\mathbb{R}, d_{s t d}\right)$, then the sequence is Cauchy, and since $x \mapsto-\log (x)$ is an isometry then the sequence

$$
\{\log (n)\}
$$

is also Cauchy. However this sequence clearly does not converge.

