
MAT308 - Homework 1 Solutions Filip Samuelsen

Exercise 10.1A:2. By substituting into the given differential equation in Exercises 2 and 3,
verify that the corresponding formula to the right gives one or more solutions to the differential
equation. Then determine the arbitrary constant so that the differentiable function y(x) satifies
the given initial condition of the form y(a) = b and satisfies the given differential equation on an
interval containing a.

dy

dx
= −x

y
; y =

√
a2 − x2, |x| < a, y(1) = 4

Solution. Let y(x) =
√
a2 − x2 then

dy

dx
=

−2x

2
√
a2 − x2

=
x

y(x)

Since 4 = y(1) =
√
a2 − 12 then

a2 = 42 + 1 = 17

hence a =
√
17.

Exercise 10.1A:3.
y′ + y = 0; y = Ke−x, y(5) = 6

Solution. Let y(x) = Ke−x then y′(x) = −Ke−x so

y′ + y = −Ke−x +Ke−x = 0

Since y(5) = 6 then 6 = Ke−5 so
K = 6e5

Exercise 10.1A:7. For each of the differential equations in 7 and 8 of the form y′ = F (x, y),
sketch the associated direction field, locating a short segment with slope F (x, y) at enough points
(x, y) so that a geometric pattern begins to appear. Then sketch into the same picture a solution
graph containing the given point (x0, y0).

y′ =
y

x
, (x0, y0) = (1, 2)

Exercise 10.1A:8.
dy

dx
= −x

y
, (x0, y0) = (1, 1)

Exercise 10.1A:11. An isocline in a direction field is a curve along which the directions of the
field are all the same. Finding the isoclines of a field is helpful in sketching the field because
the direction segments on an isocline are all parallel. For the direction field determined by a
differential equation y′ = F (x, y), the isoclines satisfy equations of the form F (x, y) = m, where
m is some constant slope. In exercise 11, sketch several isoclines, and then sketch the direction
field by drawing parallel segments crossing the isocline curves F (x, y) = m with slope m.

y′ = −y

x
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Exercise 10.1A:20. The differential equation is of the special form y′ = f(x), having isoclines
that are lines parallel to the y-axis. Thus to sketch the direction field you need to determine
only one slope on each such line, making all slope-segments centered on that line parallel to the
first one. Sketch the direction field for each of the following differential equations and then use
the field to sketch in a few solution graph

y′ = x4

Exercise 10.1A:25. The differential equation y′ =
√
1− y2 is satisfied by y(x) = sin(x+ a) on

any interval on which y′(x) ≥ 0. The differential equation is also satisfied by y(x) = 1 and y(x) =
−1. Show that on the interval −π

2 ≤ x ≤ π
2 there are infinitely many different solutions passing

through (0, 1) and also infinitely many different solutions passing through (0,−1). Explain why
the uniqueness part of Theorem 1.1 (in the textbook) is not contradicted by this example

Solution. For every a ∈ (−π, π) define a function fa : (−π
2 ,

π
2 ) → (−1, 1) by

fa =


sin(x+ a) for − π

2 − a < x < π
2 − a

1 for x ≥ π
2 − a

−1 for x ≤ −π
2 − a

Then clearly fa is continuous everywhere and fa is differentiable everywhere except possibly at
π
2 − a and −π

2 − a. Recall that by definition fa is differentiable at p whenever the limit

lim
h→0

fa(p+ h)− fa(p)

h

exists. Taking p = π
2 − a and approaching from the left we have

lim
h→0−

fa(
π
2 − a+ h)− fa(

π
2 − a)

h
= lim

h→0−

sin(π2 + h)− 1

h
= 0

Approaching from the right we have

lim
h→0+

fa(
π
2 − a+ h)− fa(

π
2 − a)

h
= lim

h→0+

1− 1

h
= 0

Since both the left and right limit exists, then the limit exists hence fa is differentiable at
p = π

2 − a with derivative f ′
a(

π
2 − a) = 0.

Similarly for p = −π
2 − a we have

lim
h→0+

fa(−π
2 − a+ h)− fa(−π

2 − a)

h
= lim

h→0+

sin(−π
2 + h)− 1

h
= 0

Approaching from the right we have

lim
h→0−

fa(−π
2 − a+ h)− fa(−π

2 − a)

h
= lim

h→0−

−1 + 1

h
= 0

so the limit exists hence fa is differentiable at −π
2 − a with derivative f ′

a(−π
2 − a) = 0.

I claim that for each a ∈ (−π, π) the function fa is a distinct solution to the differential

equation f ′
a(x) =

√
1− (fa(x))

2
. If a ≥ π

2 then fa(0) = 1 so this would show that there are

infinitely many different solutions passing through (0, 1). Similarly if a ≤ −π
2 then fa(0) = −1
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so this would show that there are infinitely many different solutions passing through (0,−1). To
prove the claim suppose first that −a− π

2 < x < π
2 − a then we have fa = sin(x+ a) and

dfa
dx

=
d

dx
sin(x+ a) = cos(x+ a) for − a− π

2
< x <

π

2
− a

Since cos(x− a) is positive for −a− π
2 < x < π

2 − a then

dfa
dx

= cos(x+ a) =
√
1− (sin(x+ a))2 =

√
1− (fa(x))

2
for − π

2
− a < x <

π

2
− a

Suppose now that x ≤ −π
2 − a then we have fa = −1 so

dfa
dx

= 0 =

√
1− (fa(x))

2
for x ≤ −π

2
− a

Similarly if x ≥ π
2 − a then fa = 1 so

dfa
dx

= 0 =

√
1− (fa(x))

2
for x ≥ π

2
− a

To check that distinct values of a ∈ (−π, π) give rise to distinct functions simply note that
f ′
a(x) > 0 if and only if −a− π

2 < x < π
2 − a so the domain on which the function is increasing

is distinct for each a ∈ (−π, π).

The uniqueness part of theorem 1.1 is not violated, since y 7→
√

1− y2 is not differentiable

at 1. In fact, there is no extension of y 7→
√
1− y2 to some neighbourhood of 1 which is even

Lipschitz near 1 (The derivative goes to infinity as y approaches 1).

Exercise 10.1B:1. In Exercises 1 to 10, solve each differential equation by direct integration,
and find the particular solution that satisfies the associated initial condition by determining one
or more constants of integration.

y′ = x(1− x), y(0) = 1

Exercise 10.1B:4.
du

dv
= v2 + 1, u(−1) = 1

Exercise 10.1B:5.
y′′ = 1, y(0) = 1, y′(0) = 1

Exercise 10.1B:10.

y′′′′ = x, y(0) = y′′(0) = 0, y′(1) = y′′′(1) = 1

Exercise 10.2:4. n Exercises 4 and 9, solve each differential equation by direct integration, and
find the particular solution that satisfies the associated initial condition by determining one or
more constants of integration

du

dv
= v2 + 1, u(−1) = 1

Exercise 10.2:9.
d2x

dt2
= et, x(0) = 1,

dx

dt

∣∣∣∣
t=0

= 0
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Exercise 10.2:18. In 18 and 19. Find a solution formula for the differential equations, and then
find a particular solution that satisfies the given additional condition. Verify by substitution that
your solution does satisfy the differential equation.

dy

dt
= 2ty, y(0) = 2

Exercise 10.2:19.
y′ =

x

y2
, y(1) = 0
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