Exercise 10.1A:2. By substituting into the given differential equation in Exercises 2 and 3, verify that the corresponding formula to the right gives one or more solutions to the differential equation. Then determine the arbitrary constant so that the differentiable function $y(x)$ satifies the given initial condition of the form $y(a)=b$ and satisfies the given differential equation on an interval containing a.

$$
\frac{d y}{d x}=-\frac{x}{y} ; \quad y=\sqrt{a^{2}-x^{2}}, \quad|x|<a, \quad y(1)=4
$$

Solution. Let $y(x)=\sqrt{a^{2}-x^{2}}$ then

$$
\frac{d y}{d x}=\frac{-2 x}{2 \sqrt{a^{2}-x^{2}}}=\frac{x}{y(x)}
$$

Since $4=y(1)=\sqrt{a^{2}-1^{2}}$ then

$$
a^{2}=4^{2}+1=17
$$

hence $a=\sqrt{17}$.

Exercise 10.1A:3.

$$
y^{\prime}+y=0 ; \quad y=K e^{-x}, \quad y(5)=6
$$

Solution. Let $y(x)=K e^{-x}$ then $y^{\prime}(x)=-K e^{-x}$ so

$$
y^{\prime}+y=-K e^{-x}+K e^{-x}=0
$$

Since $y(5)=6$ then $6=K e^{-5}$ so

$$
K=6 e^{5}
$$

Exercise 10.1A:7. For each of the differential equations in 7 and 8 of the form $y^{\prime}=F(x, y)$, sketch the associated direction field, locating a short segment with slope $F(x, y)$ at enough points (x, y) so that a geometric pattern begins to appear. Then sketch into the same picture a solution graph containing the given point $\left(x_{0}, y_{0}\right)$.

$$
y^{\prime}=\frac{y}{x}, \quad\left(x_{0}, y_{0}\right)=(1,2)
$$

Exercise 10.1A:8.

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad\left(x_{0}, y_{0}\right)=(1,1)
$$

Exercise 10.1A:11. An isocline in a direction field is a curve along which the directions of the field are all the same. Finding the isoclines of a field is helpful in sketching the field because the direction segments on an isocline are all parallel. For the direction field determined by a differential equation $y^{\prime}=F(x, y)$, the isoclines satisfy equations of the form $F(x, y)=m$, where m is some constant slope. In exercise 11, sketch several isoclines, and then sketch the direction field by drawing parallel segments crossing the isocline curves $F(x, y)=m$ with slope m.

$$
y^{\prime}=-\frac{y}{x}
$$

Exercise 10.1A:20. The differential equation is of the special form $y^{\prime}=f(x)$, having isoclines that are lines parallel to the y-axis. Thus to sketch the direction field you need to determine only one slope on each such line, making all slope-segments centered on that line parallel to the first one. Sketch the direction field for each of the following differential equations and then use the field to sketch in a few solution graph

$$
y^{\prime}=x^{4}
$$

Exercise 10.1A:25. The differential equation $y^{\prime}=\sqrt{1-y^{2}}$ is satisfied by $y(x)=\sin (x+a)$ on any interval on which $y^{\prime}(x) \geq 0$. The differential equation is also satisfied by $y(x)=1$ and $y(x)=$ -1 . Show that on the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ there are infinitely many different solutions passing through $(0,1)$ and also infinitely many different solutions passing through $(0,-1)$. Explain why the uniqueness part of Theorem 1.1 (in the textbook) is not contradicted by this example
Solution. For every $a \in(-\pi, \pi)$ define a function $f_{a}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow(-1,1)$ by

$$
f_{a}= \begin{cases}\sin (x+a) & \text { for }-\frac{\pi}{2}-a<x<\frac{\pi}{2}-a \\ 1 & \text { for } x \geq \frac{\pi}{2}-a \\ -1 & \text { for } x \leq-\frac{\pi}{2}-a\end{cases}
$$

Then clearly f_{a} is continuous everywhere and f_{a} is differentiable everywhere except possibly at $\frac{\pi}{2}-a$ and $-\frac{\pi}{2}-a$. Recall that by definition f_{a} is differentiable at p whenever the limit

$$
\lim _{h \rightarrow 0} \frac{f_{a}(p+h)-f_{a}(p)}{h}
$$

exists. Taking $p=\frac{\pi}{2}-a$ and approaching from the left we have

$$
\lim _{h \rightarrow 0^{-}} \frac{f_{a}\left(\frac{\pi}{2}-a+h\right)-f_{a}\left(\frac{\pi}{2}-a\right)}{h}=\lim _{h \rightarrow 0^{-}} \frac{\sin \left(\frac{\pi}{2}+h\right)-1}{h}=0
$$

Approaching from the right we have

$$
\lim _{h \rightarrow 0^{+}} \frac{f_{a}\left(\frac{\pi}{2}-a+h\right)-f_{a}\left(\frac{\pi}{2}-a\right)}{h}=\lim _{h \rightarrow 0^{+}} \frac{1-1}{h}=0
$$

Since both the left and right limit exists, then the limit exists hence f_{a} is differentiable at $p=\frac{\pi}{2}-a$ with derivative $f_{a}^{\prime}\left(\frac{\pi}{2}-a\right)=0$.

Similarly for $p=-\frac{\pi}{2}-a$ we have

$$
\lim _{h \rightarrow 0^{+}} \frac{f_{a}\left(-\frac{\pi}{2}-a+h\right)-f_{a}\left(-\frac{\pi}{2}-a\right)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\sin \left(-\frac{\pi}{2}+h\right)-1}{h}=0
$$

Approaching from the right we have

$$
\lim _{h \rightarrow 0^{-}} \frac{f_{a}\left(-\frac{\pi}{2}-a+h\right)-f_{a}\left(-\frac{\pi}{2}-a\right)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1+1}{h}=0
$$

so the limit exists hence f_{a} is differentiable at $-\frac{\pi}{2}-a$ with derivative $f_{a}^{\prime}\left(-\frac{\pi}{2}-a\right)=0$.
I claim that for each $a \in(-\pi, \pi)$ the function f_{a} is a distinct solution to the differential equation $f_{a}^{\prime}(x)=\sqrt{1-\left(f_{a}(x)\right)^{2}}$. If $a \geq \frac{\pi}{2}$ then $f_{a}(0)=1$ so this would show that there are infinitely many different solutions passing through $(0,1)$. Similarly if $a \leq-\frac{\pi}{2}$ then $f_{a}(0)=-1$
so this would show that there are infinitely many different solutions passing through $(0,-1)$. To prove the claim suppose first that $-a-\frac{\pi}{2}<x<\frac{\pi}{2}-a$ then we have $f_{a}=\sin (x+a)$ and

$$
\frac{d f_{a}}{d x}=\frac{d}{d x} \sin (x+a)=\cos (x+a) \quad \text { for }-a-\frac{\pi}{2}<x<\frac{\pi}{2}-a
$$

Since $\cos (x-a)$ is positive for $-a-\frac{\pi}{2}<x<\frac{\pi}{2}-a$ then

$$
\frac{d f_{a}}{d x}=\cos (x+a)=\sqrt{1-(\sin (x+a))^{2}}=\sqrt{1-\left(f_{a}(x)\right)^{2}} \text { for }-\frac{\pi}{2}-a<x<\frac{\pi}{2}-a
$$

Suppose now that $x \leq-\frac{\pi}{2}-a$ then we have $f_{a}=-1$ so

$$
\frac{d f_{a}}{d x}=0=\sqrt{1-\left(f_{a}(x)\right)^{2}} \quad \text { for } x \leq-\frac{\pi}{2}-a
$$

Similarly if $x \geq \frac{\pi}{2}-a$ then $f_{a}=1$ so

$$
\frac{d f_{a}}{d x}=0=\sqrt{1-\left(f_{a}(x)\right)^{2}} \quad \text { for } x \geq \frac{\pi}{2}-a
$$

To check that distinct values of $a \in(-\pi, \pi)$ give rise to distinct functions simply note that $f_{a}^{\prime}(x)>0$ if and only if $-a-\frac{\pi}{2}<x<\frac{\pi}{2}-a$ so the domain on which the function is increasing is distinct for each $a \in(-\pi, \pi)$.

The uniqueness part of theorem 1.1 is not violated, since $y \mapsto \sqrt{1-y^{2}}$ is not differentiable at 1. In fact, there is no extension of $y \mapsto \sqrt{1-y^{2}}$ to some neighbourhood of 1 which is even Lipschitz near 1 (The derivative goes to infinity as y approaches 1).

Exercise 10.1B:1. In Exercises 1 to 10, solve each differential equation by direct integration, and find the particular solution that satisfies the associated initial condition by determining one or more constants of integration.

$$
y^{\prime}=x(1-x), \quad y(0)=1
$$

Exercise 10.1B:4.

$$
\frac{d u}{d v}=v^{2}+1, \quad u(-1)=1
$$

Exercise 10.1B:5.

$$
y^{\prime \prime}=1, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Exercise 10.1B:10.

$$
y^{\prime \prime \prime \prime}=x, \quad y(0)=y^{\prime \prime}(0)=0, \quad y^{\prime}(1)=y^{\prime \prime \prime}(1)=1
$$

Exercise 10.2:4. n Exercises 4 and 9, solve each differential equation by direct integration, and find the particular solution that satisfies the associated initial condition by determining one or more constants of integration

$$
\frac{d u}{d v}=v^{2}+1, \quad u(-1)=1
$$

Exercise 10.2:9.

$$
\frac{d^{2} x}{d t^{2}}=e^{t}, \quad x(0)=1,\left.\quad \frac{d x}{d t}\right|_{t=0}=0
$$

Exercise 10.2:18. In 18 and 19. Find a solution formula for the differential equations, and then find a particular solution that satisfies the given additional condition. Verify by substitution that your solution does satisfy the differential equation.

$$
\frac{d y}{d t}=2 t y, \quad y(0)=2
$$

Exercise 10.2:19.

$$
y^{\prime}=\frac{x}{y^{2}}, \quad y(1)=0
$$

